B Can a Gravitational System be Treated as a Single Curved Spacetime?

  • B
  • Thread starter Thread starter BeedS
  • Start date Start date
  • Tags Tags
    Spacetime System
BeedS
Messages
47
Reaction score
2
Hey, if I take two objects for Example the Earth and Moon and treat them as a gravitational bound “system”. The Earth and Moon have their own local curves in spacetime. Can I use/treat the whole “system” as a curve in spacetime? For example, a curve that includes all objects of the “system” mass/gravity merged/added and is strongest at the “systems” Barycenter.
 
Physics news on Phys.org
Depends what for. At a large enough distance the field will be pretty much identical to the field of a point mass at the barycentre, although that mass may or may not be well approximated by the sum of the independent masses (it would be ok for Earth and Moon). So in that case, yes you could. If you want to fly rockets from one object to the other, no, not even close.
 
Ibix said:
At a large enough distance the field will be pretty much identical to the field of a point mass at the barycentre
If I take objects for Example the particles of an atomic system and treat them as a gravitational bound “system”… ? ...is the atomic system far enough? :oops:

Ibix said:
If you want to fly rockets from one object to the other, no, not even close.
Yes, I was thinking for external objects located outside the system, interacting with the system.
 
BeedS said:
If I take objects for Example the particles of an atomic system and treat them as a gravitational bound “system”… ? ...
You mean the gravitational field of a single atom? It's too tiny for is to know if GR models it correctly. Assuming it does, though, you'd need such incredibly precise measurements to detect the field that it's impossible to say how close you could go and still treat it as a point source.

Note that an atom is not gravitationally bound. Atoms are held together by strong forces in the nucleus and electromagnetic forces between the nucleus and electrons.
BeedS said:
Yes, I was thinking for external objects located outside the system, interacting with the system.
Basically, any system will look like a point source when you're far enough from it. But what "far enough" means in practice depends on how precisely you're measuring. For a simple example, consider the case of the Sun, mass ##M_S## and distance ##R## away from you, and the Earth, mass ##M_E## and distance ##R+r## away from you. We'll have you, the Earth and the Sun in a straight line so we can be lazy about vectors and use Newtonian gravity, because that's valid way before pretending the Earth and Sun are a single point is valid.

The gravitational acceleration you feel is $$\begin{eqnarray*}
g&=&\frac{GM_S}R+\frac{GM_E}{R+r}\\
&=&\frac{GM_S}R+\frac{GM_E}{R}\frac{1}{1+r/R}\\
&=&\frac{GM_S}R+\frac{GM_E}{R}\left(1-\frac{r}{R}+\frac{r^2}{R^2}-\frac{r^3}{R^3}+\ldots\right)\\
&=&\frac{G(M_S+M_E)}R-\frac{GM_E}{R}\left(\frac{r}{R}-\frac{r^2}{R^2}+\frac{r^3}{R^3}-\ldots\right)
\end{eqnarray*}$$Whether you can detect the difference between that and ##G(M_S+M_E)/R^2## depends on whether the experiment you are doing is far enough away that your measurement error is bigger than that last term in the brackets - that is that your distance from the Sun, ##R##, is so much larger than the Earth-Sun distance, ##r##, that all those terms in the brackets are so nearly zero you don't care.
 
  • Like
Likes BeedS and PeroK
Ibix said:
You mean the gravitational field of a single atom? It's too tiny for is to know if GR models it correctly
It's too tiny to tell if Newtonian gravity models it correctly too.
 
  • Like
Likes Nugatory, Ibix and PeroK
In this video I can see a person walking around lines of curvature on a sphere with an arrow strapped to his waist. His task is to keep the arrow pointed in the same direction How does he do this ? Does he use a reference point like the stars? (that only move very slowly) If that is how he keeps the arrow pointing in the same direction, is that equivalent to saying that he orients the arrow wrt the 3d space that the sphere is embedded in? So ,although one refers to intrinsic curvature...
So, to calculate a proper time of a worldline in SR using an inertial frame is quite easy. But I struggled a bit using a "rotating frame metric" and now I'm not sure whether I'll do it right. Couls someone point me in the right direction? "What have you tried?" Well, trying to help truly absolute layppl with some variation of a "Circular Twin Paradox" not using an inertial frame of reference for whatevere reason. I thought it would be a bit of a challenge so I made a derivation or...
I started reading a National Geographic article related to the Big Bang. It starts these statements: Gazing up at the stars at night, it’s easy to imagine that space goes on forever. But cosmologists know that the universe actually has limits. First, their best models indicate that space and time had a beginning, a subatomic point called a singularity. This point of intense heat and density rapidly ballooned outward. My first reaction was that this is a layman's approximation to...
Back
Top