B Can a Gravitational System be Treated as a Single Curved Spacetime?

  • B
  • Thread starter Thread starter BeedS
  • Start date Start date
  • Tags Tags
    Spacetime System
BeedS
Messages
47
Reaction score
2
Hey, if I take two objects for Example the Earth and Moon and treat them as a gravitational bound “system”. The Earth and Moon have their own local curves in spacetime. Can I use/treat the whole “system” as a curve in spacetime? For example, a curve that includes all objects of the “system” mass/gravity merged/added and is strongest at the “systems” Barycenter.
 
Physics news on Phys.org
Depends what for. At a large enough distance the field will be pretty much identical to the field of a point mass at the barycentre, although that mass may or may not be well approximated by the sum of the independent masses (it would be ok for Earth and Moon). So in that case, yes you could. If you want to fly rockets from one object to the other, no, not even close.
 
Ibix said:
At a large enough distance the field will be pretty much identical to the field of a point mass at the barycentre
If I take objects for Example the particles of an atomic system and treat them as a gravitational bound “system”… ? ...is the atomic system far enough? :oops:

Ibix said:
If you want to fly rockets from one object to the other, no, not even close.
Yes, I was thinking for external objects located outside the system, interacting with the system.
 
BeedS said:
If I take objects for Example the particles of an atomic system and treat them as a gravitational bound “system”… ? ...
You mean the gravitational field of a single atom? It's too tiny for is to know if GR models it correctly. Assuming it does, though, you'd need such incredibly precise measurements to detect the field that it's impossible to say how close you could go and still treat it as a point source.

Note that an atom is not gravitationally bound. Atoms are held together by strong forces in the nucleus and electromagnetic forces between the nucleus and electrons.
BeedS said:
Yes, I was thinking for external objects located outside the system, interacting with the system.
Basically, any system will look like a point source when you're far enough from it. But what "far enough" means in practice depends on how precisely you're measuring. For a simple example, consider the case of the Sun, mass ##M_S## and distance ##R## away from you, and the Earth, mass ##M_E## and distance ##R+r## away from you. We'll have you, the Earth and the Sun in a straight line so we can be lazy about vectors and use Newtonian gravity, because that's valid way before pretending the Earth and Sun are a single point is valid.

The gravitational acceleration you feel is $$\begin{eqnarray*}
g&=&\frac{GM_S}R+\frac{GM_E}{R+r}\\
&=&\frac{GM_S}R+\frac{GM_E}{R}\frac{1}{1+r/R}\\
&=&\frac{GM_S}R+\frac{GM_E}{R}\left(1-\frac{r}{R}+\frac{r^2}{R^2}-\frac{r^3}{R^3}+\ldots\right)\\
&=&\frac{G(M_S+M_E)}R-\frac{GM_E}{R}\left(\frac{r}{R}-\frac{r^2}{R^2}+\frac{r^3}{R^3}-\ldots\right)
\end{eqnarray*}$$Whether you can detect the difference between that and ##G(M_S+M_E)/R^2## depends on whether the experiment you are doing is far enough away that your measurement error is bigger than that last term in the brackets - that is that your distance from the Sun, ##R##, is so much larger than the Earth-Sun distance, ##r##, that all those terms in the brackets are so nearly zero you don't care.
 
  • Like
Likes BeedS and PeroK
Ibix said:
You mean the gravitational field of a single atom? It's too tiny for is to know if GR models it correctly
It's too tiny to tell if Newtonian gravity models it correctly too.
 
  • Like
Likes Nugatory, Ibix and PeroK
Thread 'Can this experiment break Lorentz symmetry?'
1. The Big Idea: According to Einstein’s relativity, all motion is relative. You can’t tell if you’re moving at a constant velocity without looking outside. But what if there is a universal “rest frame” (like the old idea of the “ether”)? This experiment tries to find out by looking for tiny, directional differences in how objects move inside a sealed box. 2. How It Works: The Two-Stage Process Imagine a perfectly isolated spacecraft (our lab) moving through space at some unknown speed V...
Does the speed of light change in a gravitational field depending on whether the direction of travel is parallel to the field, or perpendicular to the field? And is it the same in both directions at each orientation? This question could be answered experimentally to some degree of accuracy. Experiment design: Place two identical clocks A and B on the circumference of a wheel at opposite ends of the diameter of length L. The wheel is positioned upright, i.e., perpendicular to the ground...
According to the General Theory of Relativity, time does not pass on a black hole, which means that processes they don't work either. As the object becomes heavier, the speed of matter falling on it for an observer on Earth will first increase, and then slow down, due to the effect of time dilation. And then it will stop altogether. As a result, we will not get a black hole, since the critical mass will not be reached. Although the object will continue to attract matter, it will not be a...
Back
Top