Can a group have monomorphisms in both directions and still not be isomorphic?

charlamov
Messages
11
Reaction score
0
Is it true that if there is monomorphism from group A to group B and monomorphism from group B to group A than A and B are isomorphic? i need some explanation. thx
 
Physics news on Phys.org
Yes, I think that is true. At least for finite groups, because an injection both ways implies they have the same size, which means it is a bijection. Not sure about infinite groups, a good strategy for trying to find if something is true or not, is try proving either and see what facts you lack, try to construct a counterexample, which may help continue trying to prove truth, back and forth till you realize if it's true or not.

So if you can't see a proof for the infinite case as I haven't, try constructing a counterexample.
 
thanks, i finally have found that it is not true generally
 
did you find the counterexample?
 
i guess the usual example is of free (non abelian) groups on different sets of generators.

as i recall, a figure eight knot has a fundamental group which is free on two generators. Then you construct a covering space which is a wedge of more than two loops.

The covering space has fundamental group free on more generators, but injects into the fundamental group of the base.

Just recalling a lecture by Eilenberg from 30-40 years ago. I'll check it out.

here's a reference in hatcher's free algebraic topology book, pages 57-61.

http://www.math.cornell.edu/~hatcher/AT/ATpage.html
 
Last edited:
mathwonk said:
i guess the usual example is of free (non abelian) groups on different sets of generators.

as i recall, a figure eight knot has a fundamental group which is free on two generators. Then you construct a covering space which is a wedge of more than two loops.

The covering space has fundamental group free on more generators, but injects into the fundamental group of the base.

Just recalling a lecture by Eilenberg from 30-40 years ago. I'll check it out.

here's a reference in hatcher's free algebraic topology book, pages 57-61.

http://www.math.cornell.edu/~hatcher/AT/ATpage.html



Ah, the above reminded me: the free group \,F_2\, on two generators contains as a subgroup the free group on any number of generators up to and including the free group on infinite countable generators (for example, the group's commutator subgroup \,(F_2)'=[F_2:F_2]\cong F_\infty\,) , so we have injections F_2\to F_\infty\,\,,\,\,F_\infty\to F_2 but the two groups are clearly non-isomorphic.

DonAntonio
 
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...

Similar threads

Back
Top