As an example, according to Wiki, the Kerr Metric is equivalent to a co-rotating reference frame that rotates with angular speed \Omega, and this angular speed depends on both the radius r and the colatitude \theta:
\Omega =- \frac{g_{t\phi}}{g_{\phi \phi}}=\frac{r_sarc}{\rho^2(r^2+a^2)+r_sa^2 r \sin^2\theta }
\rho ^2=r^2+a^2\cos^2\theta
Substituting r with nr_s and a with
\frac{a_*}{2}r_s
gives, after about a page of math, something like:
\Omega =\frac{c}{r_s}\left ( \frac{8na_*}{16n^4+4n^2a_*^2+4n^2a_*^2\cos^2\theta+4na_*^2\sin^2\theta+a_*^4\cos^2\theta } \right )
Or
\Omega =\frac{c}{r_s}p(n,a_*,\theta)
The angular speed is given by the speed of light divided by the Schwarzschild radius times a polynomial p(n,a_*,\theta) which is a dimensionless scale factor given by:
p(n,a_*,\theta)=\frac{8na_*}{16n^4+4n^2a_*^2+4n^2a_*^2\cos^2\theta+4na_*^2\sin^2\theta+a_*^4\cos^2\theta }
n=\frac{r}{r_s}=\frac{rc^2}{2GM}\geq 1
a_*=\frac{J}{J_{max}}=\frac{Jc}{GM^2}\leq 1