I Can a Tower of Books Move with Lighter Forces?

AI Thread Summary
The discussion centers on the mechanics of a stack of books and the forces acting on them. It clarifies that the "last book" refers to the bottom book in the stack, which exerts a force on the surface equal to N=nmg. When considering the application of force, the placement of that force affects the motion of the stack, as pushing below the center of mass is generally easier than at the top. The conversation also emphasizes the importance of clear terminology, suggesting the use of "top book" and "bottom book" for clarity. Overall, the interaction of forces in a stack of books is complex and influenced by the distribution of weight and the point of force application.
Clockclocle
Messages
31
Reaction score
1
Suppose n book stack on each other. Since each book have the same weigh then the last book exert a force N=nmg on the surface so it has the biggest static friction. But if we treat the whole tower of books as one particle it also has N=nmg. This mean if we exert enough force in the last book, the tower keep moving as we exert lighter force on all the book at the same time?
 
Physics news on Phys.org
Clockclocle said:
the last book exert a force N=nmg on the surface
The last book does not make contact with the surface. It exerts a friction force only on the book it's on top of.

##\ ##
 
BvU said:
The last book does not make contact with the surface. It exerts a friction force only on the book it's on top of.
What? I think the last book would both contact with the surface and the top of it?
 
I think the OP is using "last book" to mean the one at the bottom of the stack. (I would call the top one the last book, since it was the last one placed on the stack, but the question makes more sense if it means the bottom book.)

In that case, the answer to the question depends on what idealisation you make. If you idealise the books as non-compressible and much wider than the stack is tall so there's no significant difference in torque between the two cases, then yes you can get the same motion by applying ##n## forces of magnitude ##F## or one of magnitude ##nF##.

In reality, books are typically slightly compressible and a stack of books will frequently be taller than it is wide. In that case where you apply the force matters because it will change how the weight is distributed which may affect how easily it slides. It's a fairly common experience that pushing something at a point below its center of mass is easier than pushing it at the top.
 
Last edited:
Clockclocle said:
Suppose n book stack on each other
This is not possible: you can place a book on top of another book, but then the lower book is not on top of the top one. Langauge .. :rolleyes:

Clockclocle said:
What? I think the last book would both contact with the surface and the top of it?
It seems we mean different things when we mention 'the last book'. Langauge ... :rolleyes:

Easier to only use 'top book' and 'bottom book'. Even better to make a sketch to clarify.

Clockclocle said:
This mean if we exert enough force in the last book, the tower keep moving as we exert lighter force on all the book at the same time?
Could you now clarify your question ? I have difficuty understanding the last part...

(and let's assume the books all behave as identical ideal incompressible blocks, with a friction coefficient ##\mu## -- both between books and between bottom book and table. OK?)

##\ ##
 
Thread 'Gauss' law seems to imply instantaneous electric field propagation'
Imagine a charged sphere at the origin connected through an open switch to a vertical grounded wire. We wish to find an expression for the horizontal component of the electric field at a distance ##\mathbf{r}## from the sphere as it discharges. By using the Lorenz gauge condition: $$\nabla \cdot \mathbf{A} + \frac{1}{c^2}\frac{\partial \phi}{\partial t}=0\tag{1}$$ we find the following retarded solutions to the Maxwell equations If we assume that...
Dear all, in an encounter of an infamous claim by Gerlich and Tscheuschner that the Greenhouse effect is inconsistent with the 2nd law of thermodynamics I came to a simple thought experiment which I wanted to share with you to check my understanding and brush up my knowledge. The thought experiment I tried to calculate through is as follows. I have a sphere (1) with radius ##r##, acting like a black body at a temperature of exactly ##T_1 = 500 K##. With Stefan-Boltzmann you can calculate...
Thread 'Griffith, Electrodynamics, 4th Edition, Example 4.8. (First part)'
I am reading the Griffith, Electrodynamics book, 4th edition, Example 4.8 and stuck at some statements. It's little bit confused. > Example 4.8. Suppose the entire region below the plane ##z=0## in Fig. 4.28 is filled with uniform linear dielectric material of susceptibility ##\chi_e##. Calculate the force on a point charge ##q## situated a distance ##d## above the origin. Solution : The surface bound charge on the ##xy## plane is of opposite sign to ##q##, so the force will be...
Back
Top