Can Any 2-Plane Be Mapped to Another Using Linear Maps and Translation?

  • Thread starter Thread starter WWGD
  • Start date Start date
  • Tags Tags
    Planes
WWGD
Science Advisor
Homework Helper
Messages
7,679
Reaction score
12,490
Hi, just curious as to whether we can map any 2-planep: ax+by+cz=d into any other

2-plane p': a'x+b'y+c'z=d' by using a linear map (plus a translation , maybe). I was thinking

that we could maybe first translate to the origin , for each plane, then , given the

angles ( t,r,s) with the respective x,y,z axes, we could rotate by (-t,-r,-s) to have

a plane z=constant , and do the same for c'. Would that work?
 
Physics news on Phys.org
First translate each plane to the origin. Then take a basis for each plane and take a linear map which maps the basis vectors to each other.
 
But how do you find a basis for a plane using only the equation ax+by+cz=0?
 
WWGD said:
But how do you find a basis for a plane using only the equation ax+by+cz=0?

Well

(-b/a,1,0),(-c/a,0,1)

is a basis (if a is nonzero). If a is zero, then you must do something analogously with b and c.
 
Thread 'Determine whether ##125## is a unit in ##\mathbb{Z_471}##'
This is the question, I understand the concept, in ##\mathbb{Z_n}## an element is a is a unit if and only if gcd( a,n) =1. My understanding of backwards substitution, ... i have using Euclidean algorithm, ##471 = 3⋅121 + 108## ##121 = 1⋅108 + 13## ##108 =8⋅13+4## ##13=3⋅4+1## ##4=4⋅1+0## using back-substitution, ##1=13-3⋅4## ##=(121-1⋅108)-3(108-8⋅13)## ... ##= 121-(471-3⋅121)-3⋅471+9⋅121+24⋅121-24(471-3⋅121## ##=121-471+3⋅121-3⋅471+9⋅121+24⋅121-24⋅471+72⋅121##...
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
Back
Top