sid_galt
- 502
- 1
Can anyone solve this?
<br /> \int_{-L{\substack{2}}}^{L{\substack{1}}-L{\substack{2}}} \left[ \int_{-L{\substack{2}}+R{\substack{x}}}^{L{\substack{4}}+R{\substack{x}}} \frac{{\sigma}xz}{4\pi\varepsilon{\substack{0}}(x^2+y^2+z^2){\sqrt{(x^2+z^2)(y^2+z^2)}}} dx \right] dz<br />
where \sigma and y are constants.
<br /> \int_{-L{\substack{2}}}^{L{\substack{1}}-L{\substack{2}}} \left[ \int_{-L{\substack{2}}+R{\substack{x}}}^{L{\substack{4}}+R{\substack{x}}} \frac{{\sigma}xz}{4\pi\varepsilon{\substack{0}}(x^2+y^2+z^2){\sqrt{(x^2+z^2)(y^2+z^2)}}} dx \right] dz<br />
where \sigma and y are constants.