Can Direct Sum Isomorphism Imply Module Equality in PID?

  • Thread starter Thread starter bruno321
  • Start date Start date
  • Tags Tags
    Modules
bruno321
Messages
4
Reaction score
0
Hi. I'm trying to prove this "little fact": let M, N be finitely generated modules over a PID. Then if M+M=N+N (where = means isomorphism and + means direct sum) then M=N.

I'm sure it can be done with the structure theorem (it is obvious from the hypotheses); it looks like it should be trivially proven, but alas, I don't think it can be.

What do you think?

Cheers,
 
Physics news on Phys.org
EDIT: this isn't true the way I originally thought it was...thinking harder!

Well it's certainly not true without the finitely generated over a PID hypothesis (just think about free abelian groups of infinite rank), so I'm guessing it's some particular property of finitely generated modules over PIDs. The structure theorem immediately comes to mind.
 
M + m = n + n.
2m = 2n
m = n
 
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...
Back
Top