Cobalt101 said:
For a scenario of faster than light, say twice the speed of light, 100,000 years will pass on Earth. Presumably the maths show that for the photon (or if you like a neutrino) time went backwards.
No; it's more complicated than that.
A tachyon--a particle that travels faster than light--travels on a spacelike worldline. But the concept of "elapsed time", or "experienced time"--the correct technical term is "proper time"--only applies to a timelike worldline. It simply doesn't make sense for a spacelike worldline. So the question "how much time elapses on the tachyon's clock as it travels from Earth to the galaxy 100,000 light-years away" has no answer; it's asking about something that isn't well-defined.
When people say that tachyons can "travel backwards in time", they are referring to one of two things. The first is simply that, for two events that are spacelike separated, their time ordering is frame-dependent. So, for example, if we label the event of the tachyon leaving Earth as event E, and the event of it arriving at the galaxy 100,000 light-years away as event G, then in the Earth frame, event E happens, say, 50,000 years after event G (this assumes that the tachyon travels at twice the speed of light in the Earth frame); but there will be other frames in which event E happens at the same time as event G, and still other frames in which event E happens
after event G. In those latter frames, the tachyon "appears" to be traveling backwards in time.
But actually, it's even more complicated than
that. Consider the viewpoint of someone at rest in a frame in which event E happens after event G. This person would say that the tachyon traveled from the distant galaxy to Earth, rather than from Earth to the galaxy. So actually, the question of which direction the tachyon is "really" traveling is not well-defined either--its direction of travel is frame-dependent, because the time ordering of the endpoints of its journey is frame-dependent. The upshot of all this is that this first sense of a tachyon "traveling backwards in time" is not really a problem with time travel so much as a problem with the general idea of tachyons in itself, or rather with trying to reconcile the idea of tachyons with our normal understanding of causality and the ordering of events.
There is a second sense in which tachyons enable "time travel", however, which is not frame-dependent--but it does require an assumption about how tachyons move relative to their source. The assumption is that any tachyon source generates tachyons that move at some fixed velocity (determined by the internal structure of the source, presumably)
relative to the source. This is really just a way of saying that whatever the laws of physics are that govern tachyon sources (assuming such laws exist), they must be Lorentz invariant.
If this assumption is true, then we can easily construct a closed "time loop" of communication using tachyon signals (note that we are also assuming that tachyons don't just travel faster than light, but can be used to send signals faster than light, which has its own problems--see the link below). Suppose we use our tachyon communicator to send a signal from Earth to a spaceship which is traveling away from Earth towards a distant star at half the speed of light. For simplicity, we will assume that tachyon signals from this model of communicator travel instantaneously, relative to the source. We'll suppose the ship is 5 light-years away at the instant (Earth time) that the signal is sent. That means the signal arrives at that same instant (Earth time) on the ship.
Now the ship sends back an acknowledgment using its own tachyon communicator, which is the same model as the one on Earth. Since tachyons travel instantaneously relative to the source, this return signal arrives on Earth at the same instant it was sent,
in the frame of the ship. But this means the signal arrives
earlier, on Earth, than the outbound signal that it is supposed to be a response to! Specifically, if you work out the math, it arrives 2.5 years earlier. This creates a closed loop of communication, which, if actual information could be sent this way, would create a lot of problems.
The Usenet Physics FAQ article on tachyons discusses other issues involving tachyons, including what happens when you try to model them quantum mechanically:
http://math.ucr.edu/home/baez/physics/ParticleAndNuclear/tachyons.html