P3X-018 said:
In http://members.tripod.com/conduit9SR/SR3.html" example of relativity with the space trains, if we are in train B (were will observe train A is moving), then why can't the events be observed simultaniuosly?
It really does seem strange, doesn't it? I don't think anyone has studied the relativity without challenging the loss of absolute simultaneity. The fact is, the orientation of the trains in spacetime is angularly rotated wrt one another due to the relative motion of the 2 trains. This "frame rotation" between frame perspectives produces the relativistic effects of contraction and dilation. The only way that speed c can remain invariant, is if there is disagreement of when and where events of afar occur. One thing that falls out of this all is that ... what is simultaneous in one frame is not simultaneous in another differing frame.
You should take a look at the Minkowski worldline diagram I recently posted in another thread, assuming you are up on Minkowski spacetime illustrations. I believe the illustration in the attached file of the following link will answer your question...
P3X-018 said:
If we ARE in the middle of B, then the light SHOULD take the same time to reach from the front and from the back to the middle if the events occurred simultaneously, otherwise we wouldn't be in the middle.
If the light didn't take the same time from the front and the back to reach the middle, then wouldn't we KNOW that WE are moving.:
First, each train is inertial, and so the passengers of each train are equally obliged to believe they are at rest and the other train in motion. This is because one cannot FEEL their own inertia when inertial, since there is no accelerational force experienced.
Second, per train B passengers, the light in fact does travel identical length from each end of the train to the center pilot. The fact that one meteor strikes the fwd end of train 1st per train B doesns't matter. The light must travel from each impact point to the center of the train, and the ends of the train are equal distance from its center. Light from the 1st (fwd) collision arrives 1st from half the train's length, then light from the 2nd (aft) collision arrives last from half the train's length. So per A or B, the light paths from each end of one's own train are identical and the light travels at c all the way. In train A the events are simultaneous, but in train B they are asynchronous.
P3X-018 said:
Because how can the events be observed simultaneously by A if A is moving relative to B?
By definition of the scenario, we start with the fact that the meteors strike the train A's ends AT ONCE per A. So this is a scenario "reqt". Then, it's a matter of determining how train B must see it. The Lorentz Transformations allow observers to disagree on when & where events occur, because they both agree on their disagreements :-)
I should point out something which many folks do not pick up on in regards to this scenario. If both (or either) those trains accelerated in such a way to bring the trains into a common frame at rest with each other, train B is larger than train A. Only at a specific relative speed does train B attain a length such that train A sees B as long as itself...
Also, train B doesn't experience train A as the same size as B. Hence, it is quite impossible for the meteors to strike both ends AT ONCE since both ends cannot possibly be aligned simultaneously. Train B must see one end get hit firts, then the other end later, if both trains are to be struck by a single meteor when the train ends do align.
pess