karlsson
- 3
- 0
I hope this is the correct place for my question. I posted it here, because it`s from Peskin & Schroeder:
"Consider the amplitude for a free particle to propagate from \mathbf{x}_{0} to \mathbf{x} :
U(t)=\left\langle \mathbf{x}\right|e^{-iHt}\left|\mathbf{x_{0}}\right\rangle
In nonrelativistic quantum mechanics we have E=p^2/2m, so
U(t)&=&\left\langle \mathbf{x}\right|e^{-i(\mathbf{p}^{2}/2m)t}\left|\mathbf{x}_{0}\right\rangle
<br /> =\int\frac{d^{3}p}{(2\pi)^{3}}\left\langle \mathbf{x}\right|e^{-i(\mathbf{p}^{2}/2m)t}\left|\mathbf{p}\right\rangle \left\langle \mathbf{p}\right.\left|\mathbf{x_{0}}\right\rangle
<br /> =\frac{1}{(2\pi)^{3}}\int d^{3}p\, e^{-i(\mathbf{p}^{2}/2m)t}\cdot e^{i\mathbf{p}\cdot(\mathbf{x}-\mathbf{x}_{0})}<br />
<br /> =\left(\frac{m}{2\pi it}\right)^{3/2}\, e^{im(\mathbf{x}-\mathbf{x}_{0})/2t}}<br />
."
I don't understand the last equation.
Why I can't use the fourier-transformation:
<br /> =\frac{1}{(2\pi)^{3}}\int d^{3}p\, e^{-i\mathbf{p}\cdot(\mathbf{x}_{0}-\mathbf{x})}\widetilde{f}(\mathbf{p})<br />
<br /> =f(\mathbf{p})<br />
<br /> =e^{-i(\mathbf{x}-\mathbf{x}_{0})^{2}/2m)t}<br />
"Consider the amplitude for a free particle to propagate from \mathbf{x}_{0} to \mathbf{x} :
U(t)=\left\langle \mathbf{x}\right|e^{-iHt}\left|\mathbf{x_{0}}\right\rangle
In nonrelativistic quantum mechanics we have E=p^2/2m, so
U(t)&=&\left\langle \mathbf{x}\right|e^{-i(\mathbf{p}^{2}/2m)t}\left|\mathbf{x}_{0}\right\rangle
<br /> =\int\frac{d^{3}p}{(2\pi)^{3}}\left\langle \mathbf{x}\right|e^{-i(\mathbf{p}^{2}/2m)t}\left|\mathbf{p}\right\rangle \left\langle \mathbf{p}\right.\left|\mathbf{x_{0}}\right\rangle
<br /> =\frac{1}{(2\pi)^{3}}\int d^{3}p\, e^{-i(\mathbf{p}^{2}/2m)t}\cdot e^{i\mathbf{p}\cdot(\mathbf{x}-\mathbf{x}_{0})}<br />
<br /> =\left(\frac{m}{2\pi it}\right)^{3/2}\, e^{im(\mathbf{x}-\mathbf{x}_{0})/2t}}<br />
."
I don't understand the last equation.
Why I can't use the fourier-transformation:
<br /> =\frac{1}{(2\pi)^{3}}\int d^{3}p\, e^{-i\mathbf{p}\cdot(\mathbf{x}_{0}-\mathbf{x})}\widetilde{f}(\mathbf{p})<br />
<br /> =f(\mathbf{p})<br />
<br /> =e^{-i(\mathbf{x}-\mathbf{x}_{0})^{2}/2m)t}<br />