Jim Kata
- 197
- 10
I don't know that much about GUT's, but am interested in them. My question is can they be used to explain the Yukawa coupling constants like G_e which appear in terms like:
<br /> L_{\phi e} = - G_e \left( {\begin{array}{*{20}c}<br /> {\bar \upsilon _e } \\<br /> {\bar e} \\<br /> <br /> \end{array} } \right)_L \left( {\begin{array}{*{20}c}<br /> {\phi ^ + } \\<br /> {\phi ^0 } \\<br /> <br /> \end{array} } \right)e_R <br />
If so, how does this work.
<br /> L_{\phi e} = - G_e \left( {\begin{array}{*{20}c}<br /> {\bar \upsilon _e } \\<br /> {\bar e} \\<br /> <br /> \end{array} } \right)_L \left( {\begin{array}{*{20}c}<br /> {\phi ^ + } \\<br /> {\phi ^0 } \\<br /> <br /> \end{array} } \right)e_R <br />
If so, how does this work.