madness
- 813
- 69
Homework Statement
(i) Let A= (I\times I)/J be the identification space of the unit square in which all points in the subspace J=(I\times \left\{1\right\})\cup(\left\{0,1\right\}\times I) are identified. Use the circles C_t=\left\{(x,y)\in D^2|(x-t)^2+y^2=(1-t)^2 , t\in I\right\} to construct a homeomorphism f:A \rightarrow D^2 such that f[s,0]=(\cos 2\pi s,\sin 2\pi s), f[J]=(1,0),f[I\times \left\{t\right\}]=C_t
(ii) Regard S^1 as the identification space of I in which the points \left\{ 0,1 \right\} are identified via the homeomorphism I/{\lef\t{ 0,1 \right\} } \rightarrow S^1 ; <s> \rightarrow (\cos2 \pi s, \sin 2\pi s) </s>
Homework Equations
The Attempt at a Solution
(i) The space A is the square with 3 sides identified to a point. The suggested homeomorphism maps the remaining side to the circle S^1 and all other horizontal lines to circles centred at (t,0). Choose f[s,t] = (1-t)(\cos2 \pi s +t,\sin2\pi s). This satisfies the first and third of the conditions required in (i), but I'm not sure about the second. I'm not sure if the question requires a proof that this is a homeomorphism.
(ii) I'm not sure about this part. Homeomorphic spaces are automatically homotopy equivalent. We can consider a loop \omega as a function \alpha (t) = \omega (\cos 2\pi t, \sin 2 \pi t), \alpha (0) = \alpha(1) =x) since the loop is based at x. So I think if I show that it has to extend to a map on the space A given above then it automatically has to extend to a map on the disk.