Can I Find an Expression Relating x to x1 and x2 while Decomposing Operator A?

  • Thread starter Thread starter shaiguy6
  • Start date Start date
  • Tags Tags
    Operator
shaiguy6
Messages
13
Reaction score
0
So I am trying to decompose a linear operator A, in the following manner. I am trying to solve Ax=y for x, and I also have that A=(L-G), so I am trying to solve (L-G)x=y. y is given, and so are L, A, and G. Now, I also know the solutions to Lx1=y and Gx2=0. I'd like to somehow find an expression relating x to x1 and x2. Any help would be appreciated.
 
Physics news on Phys.org
In case this wasn't clear, I'll write it over this way:

(L-G)v = y
Lv1=y
Gv2=0

or equivalently:

(L-G)-1y=v
L-1y=v1
G-10=v2

v1 and v2 and v are not equal, they are different. I'd like to have an equation for v in terms of v1 and v2.
 
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
I asked online questions about Proposition 2.1.1: The answer I got is the following: I have some questions about the answer I got. When the person answering says: ##1.## Is the map ##\mathfrak{q}\mapsto \mathfrak{q} A _\mathfrak{p}## from ##A\setminus \mathfrak{p}\to A_\mathfrak{p}##? But I don't understand what the author meant for the rest of the sentence in mathematical notation: ##2.## In the next statement where the author says: How is ##A\to...
Back
Top