Can Immersion in a Liquid with Equal Body Density Mimic Zero Gravity Experience?

AI Thread Summary
Immersion in a liquid with equal body density does not replicate the zero-gravity experience due to the physical interactions of internal organs. In microgravity, organs float freely, while in a neutral buoyancy environment, they still exert pressure against the body. Circulation and respiration also differ significantly between the two settings. Neutral buoyancy tanks, like those used by NASA, simulate microgravity for astronaut training but involve movement through a viscous fluid, which is not present in true zero gravity. Overall, while there are similarities, the experiences are not identical.
kky
Messages
7
Reaction score
0
Suppose I prepare a liquid whose density is equal to the average density of my body.
Hence when I am completely immersed in it the upthrust provided will be equal to my weight. Will what I experience in such a liquid be similar to what I'll experience in zero gravity?
 
Physics news on Phys.org
Not really. I'm no expert, but your various organs would still impede upon your body as normally. In micro-gravity (there's no such thing as zero-g), the organs would be free-floating within your body. You would still feel, for instance, your intestines and liver pressing against your back in an SD tank, but not in free-fall. Circulation and respiration would similarly behave differently in the two environments.
 
kky, what you describe is indeed used to simulate ug conditions for astronaut training- NASA has a few giant swimming pools (neutral bouyancy tanks):

http://en.wikipedia.org/wiki/Neutral_Buoyancy_Laboratory

As Danger points out, this is not exactly the same as ug conditions. Another trade-off is that the astronauts have to move through a viscous fluid which is not normally present. However, neutral bouyancy tanks are useful for training situations that require periods of time longer than the 20 seconds achieved on the 'vomit comet'.
 
Thread 'Question about pressure of a liquid'
I am looking at pressure in liquids and I am testing my idea. The vertical tube is 100m, the contraption is filled with water. The vertical tube is very thin(maybe 1mm^2 cross section). The area of the base is ~100m^2. Will he top half be launched in the air if suddenly it cracked?- assuming its light enough. I want to test my idea that if I had a thin long ruber tube that I lifted up, then the pressure at "red lines" will be high and that the $force = pressure * area$ would be massive...
I feel it should be solvable we just need to find a perfect pattern, and there will be a general pattern since the forces acting are based on a single function, so..... you can't actually say it is unsolvable right? Cause imaging 3 bodies actually existed somwhere in this universe then nature isn't gonna wait till we predict it! And yea I have checked in many places that tiny changes cause large changes so it becomes chaos........ but still I just can't accept that it is impossible to solve...

Similar threads

Back
Top