Jhenrique
- 676
- 4
If from the derivate, we can generate an equation that is the equation of the tangent straight, so:
\frac{\mathrm{d} y}{\mathrm{d} x}=\frac{\mathrm{d} y}{\mathrm{d} x}
\mathrm{d} y=\frac{\mathrm{d} y}{\mathrm{d} x}\mathrm{d} x
y=\frac{\mathrm{d} y}{\mathrm{d} x}\mathrm{d} x+y_{0}
y(x)=y'(x_0)(x-x_0)+y(x_0)
And this extends even to other cases...
y(x)=y''(x_0)\frac{(x-x_0)^2}{2}+y'(x_0)(x-x_0)+y(x_0)
y(x)=y^{**}(x_0)^{\frac{(x-x_0)^2}{2}}\times y^{*}(x_0)^{(x-x_0)}\times y(x_0)
Being
y^{*}(x)=exp\frac{f'(x)}{f(x)}
The geometric derivate
... So, similarly, is not possible to generate a characteristic equation with integration?
\frac{\mathrm{d} y}{\mathrm{d} x}=\frac{\mathrm{d} y}{\mathrm{d} x}
\mathrm{d} y=\frac{\mathrm{d} y}{\mathrm{d} x}\mathrm{d} x
y=\frac{\mathrm{d} y}{\mathrm{d} x}\mathrm{d} x+y_{0}
y(x)=y'(x_0)(x-x_0)+y(x_0)
And this extends even to other cases...
y(x)=y''(x_0)\frac{(x-x_0)^2}{2}+y'(x_0)(x-x_0)+y(x_0)
y(x)=y^{**}(x_0)^{\frac{(x-x_0)^2}{2}}\times y^{*}(x_0)^{(x-x_0)}\times y(x_0)
Being
y^{*}(x)=exp\frac{f'(x)}{f(x)}
The geometric derivate
... So, similarly, is not possible to generate a characteristic equation with integration?