The electron's magnetic moment is a Bohr magneton, μ = eħ/2mc, so the dipole-dipole potential energy is roughly μ2/r3 = (1/4)(e2/ħc)(ħ/mc)3(1/r3)(mc2). The Colulomb energy is e2/r = (e2/ħc)(ħ/mc)(1/r)(mc2). The attraction and repulsion can balance when these are the same order of magnitude, namely at r = ħ/mc, the Compton wavelength, when they will both be of order (e2/ħc)(mc2).
But the kinetic energy of a particle confined within a Compton wavelength is of order mc2, which is 137 times as great as the potential. So yes there will be attraction, and at sufficiently short distances it can equal or overcome the Coulomb repulsion, but due to the much greater kinetic energy there's no possibility of a bound state.