Can Math Model Real-World Camera Focusing Dynamics?

AI Thread Summary
The discussion centers on modeling camera focusing dynamics, particularly the challenges posed by real-world lens mechanics compared to theoretical models. It highlights that while the classic lens formula applies at photographic infinity, it becomes complex for close-up photography due to the movement of the lens rather than the film or sensor. The equation 1/B + 1/D = 1/f is modified to account for the additional distance (delta) when focusing on nearby objects, but finding an efficient solution for delta remains a challenge. The conversation emphasizes the lack of resources in photography literature addressing this specific problem, as many companies treat their focusing systems as trade secrets. Overall, the thread seeks guidance on deriving a direct solution or a more efficient algorithm for calculating the necessary adjustments in lens positioning.
EmilioL
Messages
17
Reaction score
5
This problem arose in modeling camera focusing movement, such as a control system might do.

It assumes a simple (thin) lens, rays close to the optical axis, and monochromatic light. While most camera lenses are not simple, this is a first approximation.

Camera lenses project an image of a distant object (the subject of the photo) on a screen (the film or digital sensor). When the object is very far away (at "photographic infinity") the rays coming from it are nearly parallel (collimated), then the back distance (from lens to film/sensor) tht gives the sharpest image is equal to the focal length of the lens (by the definition of focal length). But when the object is nearby, the back distance must be increased to bring the projected image into focus.

Clasically, the image will be in sharpest focus when the relationship between the back distance, object distance and focal length is 1/B + 1/D = 1/f. However, real cameras do not focus by moving the back (film or sensor), they focus by moving the lens forward, towards the object. This increases B, but also decreases D by the amount. When D is large, this decrease is insignificant and can be (and usually is) ignored. But in close-up photography, and especially extreme close-up (macro lens) photography, the difference can be significant.

Starting from the lens in its infinity focus position, and calling the focusing distance added (i.e., additional bellows extension) delta, the above formula becomes 1/(f + delta) + 1/(D - delta) = 1/f.

It's easy to devise an algorithm that gives an approximate solution: loop, incrementing delta by a fixed amount until the equation becomes true.
But that's inefficient and doesn't give an exact soltuion. Increasing the precision of the algorithm by using a smaller increment also increases run time..

Given f and D, is there a direct solution for delta? Failing that, is there a more efficient algorithm?

I'm sure this is obvious to somebody here, but not to me. Any help would be greatly appreciated. I realize this is a math problem--the connection with physics is that the Gaussian focus equation -- given in every physics textbook and ever optics textbook ever written -- turns out to be somewhat difficult to apply to real cameras, which focus by moving the lens, not the back. I checked dozens of physics and photography books,, and none that I found discuss this problem. Photography doesn't have refereed journals and photography companies consider their control systems to be trade secrets. Thanks in advance!
 
Physics news on Phys.org
Immediately after posting the above, I realized that distance could be measured to the film/sensor plane--
which does not move. The focus equation 1/B + 1/D = 1/f becomes 1/(f + delta) + 1/(D - (f + delta)) = 1/f
Unfortunately, this isn't any easier to solve, so far as I can see.
 
The rope is tied into the person (the load of 200 pounds) and the rope goes up from the person to a fixed pulley and back down to his hands. He hauls the rope to suspend himself in the air. What is the mechanical advantage of the system? The person will indeed only have to lift half of his body weight (roughly 100 pounds) because he now lessened the load by that same amount. This APPEARS to be a 2:1 because he can hold himself with half the force, but my question is: is that mechanical...
Let there be a person in a not yet optimally designed sled at h meters in height. Let this sled free fall but user can steer by tilting their body weight in the sled or by optimal sled shape design point it in some horizontal direction where it is wanted to go - in any horizontal direction but once picked fixed. How to calculate horizontal distance d achievable as function of height h. Thus what is f(h) = d. Put another way, imagine a helicopter rises to a height h, but then shuts off all...
Some physics textbook writer told me that Newton's first law applies only on bodies that feel no interactions at all. He said that if a body is on rest or moves in constant velocity, there is no external force acting on it. But I have heard another form of the law that says the net force acting on a body must be zero. This means there is interactions involved after all. So which one is correct?
Back
Top