Can Non-Numerical Methods Effectively Organize Qualitative Data?

  • Thread starter Thread starter alvin51015
  • Start date Start date
  • Tags Tags
    Homework
alvin51015
Messages
11
Reaction score
0
The best question I can ask at this point is this: is there a way to order things or arrange things of which it is not even possible to use numbers or any form of numerical counting?
 
Mathematics news on Phys.org
I think you will really need to be more clear. I have no clue what you mean. Every collection of objects (let's keep it finite) can be counted and thus can be assigned a number.
 
It is possible to order "un-countable" sets, if that is what you are talking about. For example, the set of all real numbers between 0 and 1 is uncountable and is a subset of the set of all real numbers between 0 and 2 which is a subset of all real numbers between 0 and 3, etc. We can "order by inclusion"- A comes before B if and only if A is a subset of B. Of course, that collection of sets is then countable.

But "ordering" is in fact equivalent to "counting". If a collection of objects can be "well ordered" (given any two objects, A and B, we can determine whether A is before B or B is before A and each object has a unique "next" object) then the collection is "countable".
 
Right. Practically it seems that in this universe there is probably no way to do analysis without some form of numerical ordering. The only reason I brought it up was that I imagined a potential non numerical analysis would be the end result as the limit of the level of abstraction approached infinity.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top