- 1,142
- 0
Question: Find a power series solution in powers of x for the following differential equation
xy' - 3y = k
My attempt:
Assume
y = \sum_{m=0}^{\infty} a_m x^m
So,
xy' = \sum_{m=0}^{\infty}m a_m x^m
xy'-3y-k=0
implies
\sum_{m=0}^{\infty}m a_m x^m - 3\sum_{m=0}^{\infty} a_m x^m - k = 0
and
\left(a_1x+2a_2x^2 +3a_3x^3 +... \right) - \left(k + 3a_0 + 3a_1x+3a_2x^2+3a_3x^3+... \right) = 0
Which means
a_0=-k/3
a_1-3a_1=0, a_1=0
2a_2-3a_2=0, a_2=0
3a_3 - 3a_3=0, a_3=?
... a_n=0, n>3
The Question: Now, how do I find a_3?
xy' - 3y = k
My attempt:
Assume
y = \sum_{m=0}^{\infty} a_m x^m
So,
xy' = \sum_{m=0}^{\infty}m a_m x^m
xy'-3y-k=0
implies
\sum_{m=0}^{\infty}m a_m x^m - 3\sum_{m=0}^{\infty} a_m x^m - k = 0
and
\left(a_1x+2a_2x^2 +3a_3x^3 +... \right) - \left(k + 3a_0 + 3a_1x+3a_2x^2+3a_3x^3+... \right) = 0
Which means
a_0=-k/3
a_1-3a_1=0, a_1=0
2a_2-3a_2=0, a_2=0
3a_3 - 3a_3=0, a_3=?
... a_n=0, n>3
The Question: Now, how do I find a_3?
Last edited: