Can Quantum Spacetime Behave Like Turbulent Fluids?

  • Thread starter Thread starter Loren Booda
  • Start date Start date
  • Tags Tags
    Quantum Spacetime
Loren Booda
Messages
3,108
Reaction score
4
I propose that quantum spacetime behaves with turbulence, much like that dynamic of fluids. At turbulence the solutions for these unified physics would be interchangable, but more easily understood in 2+1 dimensions.

Quantized spacetime defines a nonlinear relativistic geometry interacting with a linear quantum-statistical superluminosity. A minimal continuous curvature of Planck length normally holds, beyond which a fractured spacetime conforms to lesser-dimensional structures.
 
Physics news on Phys.org
Originally posted by Loren Booda
I propose that quantum spacetime behaves with turbulence, much like that dynamic of fluids. At turbulence the solutions for these unified physics would be interchangable, but more easily understood in 2+1 dimensions.

i thought space is the situation to define the position of the objects relative to each other objects.
how does this definition relats to quantum spacetime that you refer?


and to say quantum space behaves like fluids is like giving space the propeties of matter which it isn't (as far as i know).
 
Einstein defined relativity in terms of geometry. Below the Planck scale, curved space becomes so critical toward singularity that it must either violate quantum mechanics, relativity or actual dimensionality. I would compare the proposed quantum-geometrodynamical turbulence with the nonlinear physics of fluids bounded by microscopic (linear) frictional effects.

Spacetime is often given the metaphor of a two-dimensional rubber sheet (which it isn't). Discrete particles, e. g., may behave en masse like a fluid. Equations from distinct fields of physics often yield analogous forms.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
If we release an electron around a positively charged sphere, the initial state of electron is a linear combination of Hydrogen-like states. According to quantum mechanics, evolution of time would not change this initial state because the potential is time independent. However, classically we expect the electron to collide with the sphere. So, it seems that the quantum and classics predict different behaviours!
Back
Top