Can $S_5$ be written as a multiple of $S_3$ and $S_2$?

  • Context: MHB 
  • Thread starter Thread starter anemone
  • Start date Start date
Click For Summary
SUMMARY

The discussion proves that if \( S_1 = 0 \), then \( \frac{S_5}{5} = \frac{S_3}{3} \cdot \frac{S_2}{2} \) holds true for the sums \( S_n = x^n + y^n + z^n \). The proof utilizes the identity \( x + y + z = 0 \) to derive relationships between the sums of powers of \( x, y, z \). Key steps include manipulating polynomial expansions and applying symmetric sum identities to arrive at the conclusion.

PREREQUISITES
  • Understanding of symmetric sums in algebra
  • Familiarity with polynomial identities
  • Knowledge of power sums and their relationships
  • Basic algebraic manipulation skills
NEXT STEPS
  • Study symmetric polynomials and their properties
  • Learn about Newton's identities for power sums
  • Explore polynomial expansion techniques
  • Investigate applications of symmetric sums in algebraic equations
USEFUL FOR

Mathematicians, algebra students, and educators interested in symmetric functions, polynomial identities, and power sum relationships.

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Let $$S_n=x^n+y^n+z^n$$. If $$S_1=0$$, prove that $$\frac{S_5}{5}=\frac{S_3}{3}\cdot\frac{S_2}{2}$$.
 
Physics news on Phys.org
Re: Prove S_5/5= S_3/3. S_2/2

My solution:

If we view $S_n$ as a recursive algorithm, we see that it must come from the characteristic equation:

$$(r-x)(r-y)(r-z)=0$$

$$r^3-(x+y+z)r^2+(xy+xz+yz)r-xyz=0$$

Since $x+y+z=S_1=0$, we obtain the following recursion:

$$S_{n+3}=-(xy+xz+yz)S_{n+1}+xyzS_{n}$$

Now, observing we may write:

$$(x+y+z)^2=x^2+y^2+z^2+2(xy+xz+yz)$$

$$0=S_2+2(xy+xz+yz)$$

$$-(xy+xz+yz)=\frac{S_2}{2}$$

Also, we find:

$$(x+y+z)^3=-2\left(x^3+y^3+z^3 \right)+3\left(x^2+y^2+z^2 \right)(x+y+z)+6xyz$$

$$0=-2S_3+6xyz$$

$$xyz=\frac{S^3}{3}$$

And so our recursion may be written:

$$S_{n+3}=\frac{S_2}{2}S_{n+1}+\frac{S_3}{3}S_{n}$$

Letting $n=2$, we then find:

$$S_{5}=\frac{S_2}{2}S_{3}+\frac{S_3}{3}S_{2}$$

$$S_{5}=\frac{5}{6}S_2S_{3}$$

$$\frac{S_5}{5}=\frac{S_3}{3}\cdot\frac{S_2}{2}$$

Shown as desired.
 
Re: Prove S_5/5= S_3/3. S_2/2

MarkFL said:
My solution:

If we view $S_n$ as a recursive algorithm, we see that it must come from the characteristic equation:

$$(r-x)(r-y)(r-z)=0$$

$$r^3-(x+y+z)r^2+(xy+xz+yz)r-xyz=0$$

Since $x+y+z=S_1=0$, we obtain the following recursion:

$$S_{n+3}=-(xy+xz+yz)S_{n+1}+xyzS_{n}$$

Now, observing we may write:

$$(x+y+z)^2=x^2+y^2+z^2+2(xy+xz+yz)$$

$$0=S_2+2(xy+xz+yz)$$

$$-(xy+xz+yz)=\frac{S_2}{2}$$

Also, we find:

$$(x+y+z)^3=-2\left(x^3+y^3+z^3 \right)+3\left(x^2+y^2+z^2 \right)(x+y+z)+6xyz$$

$$0=-2S_3+6xyz$$

$$xyz=\frac{S^3}{3}$$

And so our recursion may be written:

$$S_{n+3}=\frac{S_2}{2}S_{n+1}+\frac{S_3}{3}S_{n}$$

Letting $n=2$, we then find:

$$S_{5}=\frac{S_2}{2}S_{3}+\frac{S_3}{3}S_{2}$$

$$S_{5}=\frac{5}{6}S_2S_{3}$$

$$\frac{S_5}{5}=\frac{S_3}{3}\cdot\frac{S_2}{2}$$

Shown as desired.

Thanks for participating, MarkFL! And your method is neat and elegant!

We are given $S_n=x^n+y^n+z^n$ and $S_1=0$ which implies $x+y+z=0$.

From this given information we then have

[TABLE="class: grid, width: 500"]
[TR]
[TD]1.[/TD]
[TD]2.[/TD]
[/TR]
[TR]
[TD]$\small(x+y+z)^2=x^2+y^2+z^2+2(xy+yz+xz)$

$0=x^2+y^2+z^2+2(xy+yz+xz)$

$x^2+y^2+z^2=-2(xy+yz+xz)$

$x^2+y^2+z^2=-2(xy+z(x+y))$

$x^2+y^2+z^2=-2xy-2z(-z)$

$x^2+y^2-z^2=-2xy$

$xy=-\left(\dfrac{x^2+y^2-z^2}{2} \right)$[/TD]
[TD]$\small(x+y+z)^3=x^3+y^3+z^3+3(xy(x+y)+yz(y+z)+xz(x+z))+6xyz$

$0=x^3+y^3+z^3+3(xy(-z)+yz(-x)+xz(-y))+6xyz$

$0=x^3+y^3+z^3+3(xy(-z)+yz(-x)+xz(-y))+6xyz$

$x^3+y^3+z^3=3xyz$[/TD]
[/TR]
[/TABLE]

We're asked to prove $\dfrac{S_5}{5}=\dfrac{S_3}{3}\cdot\dfrac{S_2}{2}$.

We see that

$S_5=x^5+y^5+z^5$

$\;\;\;\;\;=x^5+y^5+(-x-y)^5$

$\;\;\;\;\;=x^5+y^5-(x+y)^5$

$\;\;\;\;\;=x^5+y^5-(x^5+5x^4y+10x^3y^3+10x^2y^3+5xy^4+y^5)$

$\;\;\;\;\;=-(5x^4y+10x^3y^3+10x^2y^3+5xy^4)$

$\;\;\;\;\;=-(5xy(x^3+y^3)+10x^2y^2(x+y))$

$\;\;\;\;\;=-5xy((x^3+y^3)+2xy(x+y))$

$\;\;\;\;\;=-5xy((x+y)(x^2-xy+y^2)+2xy(x+y))$

$\;\;\;\;\;=-5xy((x+y)(x^2-xy+y^2+2xy))$

$\;\;\;\;\;=-5xy((x+y)(x^2+xy+y^2))$

$\;\;\;\;\;=-5\left(\dfrac{(x^3+y^3+z^3}{3z} \right)(-z)(x^2-\left(\dfrac{x^2+y^2-z^2}{2} \right)+y^2))$

$\;\;\;\;\;=5\left(\dfrac{x^3+y^3+z^3}{3} \right)\left(\dfrac{x^2+y^2+z^2}{2} \right)$

and therefore we obtain

$\dfrac{S_5}{5}=\dfrac{S_3}{3}\cdot\dfrac{S_2}{2}$ and we're done.(Emo)
 

Similar threads

  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 4 ·
Replies
4
Views
6K
Replies
17
Views
4K
Replies
1
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 9 ·
Replies
9
Views
4K
  • · Replies 26 ·
Replies
26
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 4 ·
Replies
4
Views
6K