MHB Can $S_5$ be written as a multiple of $S_3$ and $S_2$?

  • Thread starter Thread starter anemone
  • Start date Start date
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Let $$S_n=x^n+y^n+z^n$$. If $$S_1=0$$, prove that $$\frac{S_5}{5}=\frac{S_3}{3}\cdot\frac{S_2}{2}$$.
 
Mathematics news on Phys.org
Re: Prove S_5/5= S_3/3. S_2/2

My solution:

If we view $S_n$ as a recursive algorithm, we see that it must come from the characteristic equation:

$$(r-x)(r-y)(r-z)=0$$

$$r^3-(x+y+z)r^2+(xy+xz+yz)r-xyz=0$$

Since $x+y+z=S_1=0$, we obtain the following recursion:

$$S_{n+3}=-(xy+xz+yz)S_{n+1}+xyzS_{n}$$

Now, observing we may write:

$$(x+y+z)^2=x^2+y^2+z^2+2(xy+xz+yz)$$

$$0=S_2+2(xy+xz+yz)$$

$$-(xy+xz+yz)=\frac{S_2}{2}$$

Also, we find:

$$(x+y+z)^3=-2\left(x^3+y^3+z^3 \right)+3\left(x^2+y^2+z^2 \right)(x+y+z)+6xyz$$

$$0=-2S_3+6xyz$$

$$xyz=\frac{S^3}{3}$$

And so our recursion may be written:

$$S_{n+3}=\frac{S_2}{2}S_{n+1}+\frac{S_3}{3}S_{n}$$

Letting $n=2$, we then find:

$$S_{5}=\frac{S_2}{2}S_{3}+\frac{S_3}{3}S_{2}$$

$$S_{5}=\frac{5}{6}S_2S_{3}$$

$$\frac{S_5}{5}=\frac{S_3}{3}\cdot\frac{S_2}{2}$$

Shown as desired.
 
Re: Prove S_5/5= S_3/3. S_2/2

MarkFL said:
My solution:

If we view $S_n$ as a recursive algorithm, we see that it must come from the characteristic equation:

$$(r-x)(r-y)(r-z)=0$$

$$r^3-(x+y+z)r^2+(xy+xz+yz)r-xyz=0$$

Since $x+y+z=S_1=0$, we obtain the following recursion:

$$S_{n+3}=-(xy+xz+yz)S_{n+1}+xyzS_{n}$$

Now, observing we may write:

$$(x+y+z)^2=x^2+y^2+z^2+2(xy+xz+yz)$$

$$0=S_2+2(xy+xz+yz)$$

$$-(xy+xz+yz)=\frac{S_2}{2}$$

Also, we find:

$$(x+y+z)^3=-2\left(x^3+y^3+z^3 \right)+3\left(x^2+y^2+z^2 \right)(x+y+z)+6xyz$$

$$0=-2S_3+6xyz$$

$$xyz=\frac{S^3}{3}$$

And so our recursion may be written:

$$S_{n+3}=\frac{S_2}{2}S_{n+1}+\frac{S_3}{3}S_{n}$$

Letting $n=2$, we then find:

$$S_{5}=\frac{S_2}{2}S_{3}+\frac{S_3}{3}S_{2}$$

$$S_{5}=\frac{5}{6}S_2S_{3}$$

$$\frac{S_5}{5}=\frac{S_3}{3}\cdot\frac{S_2}{2}$$

Shown as desired.

Thanks for participating, MarkFL! And your method is neat and elegant!

We are given $S_n=x^n+y^n+z^n$ and $S_1=0$ which implies $x+y+z=0$.

From this given information we then have

[TABLE="class: grid, width: 500"]
[TR]
[TD]1.[/TD]
[TD]2.[/TD]
[/TR]
[TR]
[TD]$\small(x+y+z)^2=x^2+y^2+z^2+2(xy+yz+xz)$

$0=x^2+y^2+z^2+2(xy+yz+xz)$

$x^2+y^2+z^2=-2(xy+yz+xz)$

$x^2+y^2+z^2=-2(xy+z(x+y))$

$x^2+y^2+z^2=-2xy-2z(-z)$

$x^2+y^2-z^2=-2xy$

$xy=-\left(\dfrac{x^2+y^2-z^2}{2} \right)$[/TD]
[TD]$\small(x+y+z)^3=x^3+y^3+z^3+3(xy(x+y)+yz(y+z)+xz(x+z))+6xyz$

$0=x^3+y^3+z^3+3(xy(-z)+yz(-x)+xz(-y))+6xyz$

$0=x^3+y^3+z^3+3(xy(-z)+yz(-x)+xz(-y))+6xyz$

$x^3+y^3+z^3=3xyz$[/TD]
[/TR]
[/TABLE]

We're asked to prove $\dfrac{S_5}{5}=\dfrac{S_3}{3}\cdot\dfrac{S_2}{2}$.

We see that

$S_5=x^5+y^5+z^5$

$\;\;\;\;\;=x^5+y^5+(-x-y)^5$

$\;\;\;\;\;=x^5+y^5-(x+y)^5$

$\;\;\;\;\;=x^5+y^5-(x^5+5x^4y+10x^3y^3+10x^2y^3+5xy^4+y^5)$

$\;\;\;\;\;=-(5x^4y+10x^3y^3+10x^2y^3+5xy^4)$

$\;\;\;\;\;=-(5xy(x^3+y^3)+10x^2y^2(x+y))$

$\;\;\;\;\;=-5xy((x^3+y^3)+2xy(x+y))$

$\;\;\;\;\;=-5xy((x+y)(x^2-xy+y^2)+2xy(x+y))$

$\;\;\;\;\;=-5xy((x+y)(x^2-xy+y^2+2xy))$

$\;\;\;\;\;=-5xy((x+y)(x^2+xy+y^2))$

$\;\;\;\;\;=-5\left(\dfrac{(x^3+y^3+z^3}{3z} \right)(-z)(x^2-\left(\dfrac{x^2+y^2-z^2}{2} \right)+y^2))$

$\;\;\;\;\;=5\left(\dfrac{x^3+y^3+z^3}{3} \right)\left(\dfrac{x^2+y^2+z^2}{2} \right)$

and therefore we obtain

$\dfrac{S_5}{5}=\dfrac{S_3}{3}\cdot\dfrac{S_2}{2}$ and we're done.(Emo)
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top