xepma said:
I won't say I'm a fan of pilot wave theory though, but I'll bite with a few questions:
Just to expand on Demystifer's answers a little..
how do you account for fermi/bose statistics?
Note the answer to this in orthodox QM is fundamentally mysterious, where nobody has the least idea why Pauli's exclusion principle should hold for fermions, for example, or what spin actually is. Why do same-spin fermionic particles repel each other? What exactly is the 'electron degeneracy pressure' that stops a star from collapsing? As Pauli himself, said:
"
I was unable to give a logical reason for the exclusion principle or to deduce it from more general assumptions. In the beginning I hoped that the new quantum mechanics would also rigorously deduce the exclusion principle."
The answer to this in pilot-wave theory depends on what you are allowed to assume from the start. If we say from the start (with no justification) that fermions must have antisymmetric wave functions, and bosons have symmetric ones, then it is indeed trivial. To be antisymmetric the fermionic wave function must have both positive and negative regions and hence a multidimensional nodal surface separating them upon which the wave function has the value zero. It is a property of the deBB particle trajectories that they cannot pass through these nodes. If a trajectory heads towards one it will be 'repelled' from it. This is the reason that the fermions tend to avoid each other. 'Electron degeneracy pressure' is just seen to be a manifestation of the pilot-wave 'quantum force'. If you go through the maths in detail, you find that the force exerted by the wave field prevents two fermions coming into close proximity when
their spins are the same.
Now what about the case with general wave functions. Does pilot-wave theory provide a justification of why fermionic wave functions are antisymmetric etc.? This might be thought to be a problem, since if the wave field is a physical field that propagates through space, it should be able to be represented by wave functions that do not have any particular symmetry.
One often finds textbook arguments about this which are simply incorrect. For example, the conclusion that the wave function of a fermionic system is antisymmetric does not follow from 'indistinguishability' of particles as is commonly stated (which is good since they are distinguishable in pilot-wave theory by their trajectories). Nor does the antisymmetric form arise from the requirements of relativistic invariance. The literature is also full of ***-covering statements such as 'fermions avoid each other because of statistical repulsion' - whatever that is supposed to mean.
Note that in pilot-wave theory that spin actually turns out to be a property of the wave field rather than of the particle. It is the polarization-dependent part of the wave field's angular momentum.
What is almost never done in the literature is to ask what happens when two particles (say two neutrons, to avoid the problem of electrical interaction) whose wave fields don't overlap come together and interact, and to proceed without insisting from the start that the wave function is antisymmetric. Without invoking the antisymmetry assumption, there is no obvious expression for the form of the two neutron wave function when the individual wave fields first overlap. Although I've never seen the details worked out, you can make a plausible case which indicates that the antisymmetric form of fermionic wave functions in a stationary state arises from the description of the interference between physical wave fields within a bounded region (which explains why the exclusion principle is best known in regard to stationary states). Think of the two particles as being in a box. The wave field of the two-neutron system will be successively reflected from each end of the box. In the case of a fermionic wave field, reflection at a rigid wall causes a change of the wave field's phase of pi radians. Interference between incident and reflected wave fields gives a stationary antisymmetric wave function because of the sign change on reflection.
I am aware that this raises more questions than it answers, and that I've skipped most of the details, but it is a reasonable plausibility argument for something whose explanation is entirely mysterious in the conventional theory. Note that with this, I'm going much deeper than the question you actually asked, so if it bothers you, stop at the end of the the third paragraph above.
And what about the uncertainty relation? Basic questions, I'm sure, but please, humor me ;)
OK. First of all, someone who mistakenly thinks that the uncertainty principle applies to an individual system might think that it is is evidence for particles not having trajectories at all. After all, a particle following a trajectory has a simultaneously well-defined position and momentum, right? Fortunately, it is now understood that Heisenberg's principle doesn't relate to measurements on individual systems. Uncertainty in the value of a dynamical variable refers to the statistical spread over the measured values for the various identical members of an
ensemble of systems.
In pilot wave theory the actual momentum {\bf p}=\nabla S({\bf x}) is unknown only because the position is. One can show quite easily that this leads to an 'uncertainty principle' for the
true momentum of \Delta x \Delta p \geq 0.
So what was Heisenberg going on about? What meaning can be attributed to his \Delta {\hat p} in pilot-wave theory, apart from a measure of dispersion in results of precision momentum measurements? The usual mistake lies in assuming that his \Delta {\hat p} actually refers to the momentum of a particle before the measurement. Unfortunately this is only true in the classical limit (as you would expect since Heisenberg was basically quantizing 'mv' to get the momentum operator). In pilot-wave theory the momentum is
not mv, it is something else, because of the quantum force acting on the particle. The particles follow non-Newtonian trajectories. This is a good example of why people should be very careful when they think the word 'measurement' implies (as it should) that we are revealing a pre-existing property of the system.
For what it's worth, if you analyze it carefully, Heisenberg momentum uncertainty can be identified with a component of the total stress tensor of the wave field (see Holland's standard textbook). It gives information on the current mean value of this as a particle property - not the actual momentum. The origin of statistical correlations between {\bf p} and {\bf x} measurements is due to the distribution of stresses in the wave field (which arise since the field guiding the particle in the ensemble also enters into the definition of the mean values).
Note the answers to these questions in the ensemble interpretation (which after all is what the thread is about). Q: How do you account for Bose/Fermi statistics? A: Er.. I don't. Q: And what about the uncertainty relation. A: Er, it's meaningless to ask? Can I go home now?