fzero said:
If you get the sign of \tau wrong, you'll find that r increases as you travel backwards in coordinate time on the outgoing geodesics.
I'm still confused as to what's going on here...
fzero said:
In Schwarzschild coordinates you find
- \frac{2M}{2M-r}
so there's probably something wrong with your derivation above.
Here's what I did:
v=t+r+2M \log{1-\frac{r}{2M}}
\frac{\partial v}{\partial r} = 1 + \frac{2M}{1-\frac{r}{2M}} ( - \frac{1}{2M}) = 1 - \frac{1}{1-\frac{r}{2M}} = 1 - \frac{2M}{2M-r}
so X'^\mu=(1 - \frac{2M}{2M-r},1,0,0)
so g(X,X)=\begin{pmatrix} 1-\frac{2M}{2M-r} & 1 & 0 & 0 \end{pmatrix} \begin{pmatrix} - (1-\frac{2M}{r}) & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 1 - \frac{2M}{2M-r} \\ 1 \\ 0 \\ 0 \end{pmatrix}
=\begin{pmatrix} 1-\frac{2M}{2M-r} & 1 & 0 & 0 \end{pmatrix} \begin{pmatrix} - ( 1 - \frac{2M}{r} )( 1 - \frac{2M}{2M-r} ) + 1 \\ 1 \\ 0 \\ 0 \end{pmatrix}
=\begin{pmatrix} 1-\frac{2M}{2M-r} & 1 & 0 & 0 \end{pmatrix} \begin{pmatrix} \frac{2M}{2M-r}+\frac{2M}{r} - \frac{4M^2}{(2M-r)r} \\ 1 \\ 0 \\ 0 \end{pmatrix}
= (1-\frac{2M}{2M-r} ) ( \frac{2M}{2M-r}+\frac{2M}{r} - \frac{4M^2}{(2M-r)r})+1
=\frac{2M}{2M-r} + \frac{2M}{r} - \frac{4M^2}{(2M-r)r} - \frac{4M^2}{(2M-r)^2} - \frac{4M^2}{(2M-r)r} + \frac{8M^3}{(2M-r)^2r}+1
This is slightly different from what I got last time (I realized I made a mistake) but it still isn't right...
Also, I tried to show (399):
g_{ab}u^au^b = - \left( \frac{dt}{d \tau} \right)^2 + L^2 \cosh^2{\frac{t}{L}} \left( \frac{\partial \chi}{\partial t} \right)^2
=-\left( \frac{\partial t}{\partial \tau} \right)^2 + L^2 \cosh^2{\frac{t}{L}} \left( \frac{1}{1-e^{2t}} e^t \left( \frac{dt}{d \tau} \right)^2
=-\left( \frac{dt}{d \tau} \right)^2 + \frac{L^2}{2} \left( e^{t/L} + e^{-t/L} \right) \frac{2 e^{-t}e^t}{e^{-t}-e^t} \left( \frac{dt}{d \tau} \right)^2
but that second term gives a cosh/sinh and also the arguments are different: one is t/L and the other is just t so I don't see how I'm going to get them to cancel?