Can someone go over my work for this derivative?

  • Thread starter Thread starter 1MileCrash
  • Start date Start date
  • Tags Tags
    Derivative Work
1MileCrash
Messages
1,338
Reaction score
41

Homework Statement



Find dy/dx:

(3x^2+5x-2)^{sinx}

The Attempt at a Solution



y = (3x^2+5x-2)^{sinx}

ln y = ln [(3x^2+5x-2)^{sinx}]

ln y = sinx [ln(3x^2+5x-2)]

\frac{1}{y} \frac{dy}{dx} = cosx[ln(3x^2+5x-2)] + sinx[\frac{6x+5}{3x^2+5x-2}]

\frac{dy}{dx} = [3x^2+5x-2]^{sinx} [ cosx[ln(3x^2+5x-2)] + sinx[\frac{6x+5}{3x^2+5x-2}] ]
 
Physics news on Phys.org
That looks good to me.
 
Last edited by a moderator:
Thanks fellas.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top