Can Sound Really Exist in the Vacuum of Space?

  • Thread starter Thread starter deepthishan
  • Start date Start date
  • Tags Tags
    Space Work
AI Thread Summary
Sound cannot propagate in the vacuum of space due to its low density and pressure, which means there are not enough particles to transmit sound waves. However, scientists can convert electromagnetic waves or other types of vibrations into sound waves, as demonstrated in examples from TED and NASA. The first example involves radio signals that are transformed into sound waves by receivers, similar to listening to the radio. The second example illustrates how scientists measure waves in gas clusters and convert them into sound, with extremely low frequencies, such as one cycle every 10 million years. This discussion highlights the distinction between actual sound propagation and the conversion of other wave types into sound for human perception.
Physics news on Phys.org
deepthishan said:
I have read that sounds exist in space. Some examples include:

1. http://www.ted.com/talks/honor_harger_a_history_of_the_universe_in_sound.html
2. http://www.nasa.gov/centers/goddard/universe/black_hole_sound.html

How does sound propagate in space if "Outer space has very low density and pressure, and is the closest physical approximation of a perfect vacuum" ? (- Wikipedia)

Thanks!

Number 1 is simply radio signals that we receive and turn into sound waves ourselves. It is very much like listening to the radio.

Number 2 is the result of the scientists measuring waves through the gas in the cluster and changing them into a sound. Because of the low density, the frequency of these waves is very very long, as the article said it was 10 million years long. (1 hertz is one cycle per second, this one would be 1 cycle per 10 million years.)
 
Drakkith said:
Number 1 is simply radio signals that we receive and turn into sound waves ourselves. It is very much like listening to the radio.

Number 2 is the result of the scientists measuring waves through the gas in the cluster and changing them into a sound. Because of the low density, the frequency of these waves is very very long, as the article said it was 10 million years long. (1 hertz is one cycle per second, this one would be 1 cycle per 10 million years.)

Thank you- your answer cleared up a number of questions!

However, how can these transverse waves be converted to longitudinal sound vibrations? (As guessed I'm not a Physics Major!)
 
By figuring out the frequency. If you were to look at me wave a string back and forth you could count the number of times it goes up and down per second and come up with the frequency. In this case they were able to figure out that it was once per 10 million years.
 
Thread 'Is 'Velocity of Transport' a Recognized Term in English Mechanics Literature?'
Here are two fragments from Banach's monograph in Mechanics I have never seen the term <<velocity of transport>> in English texts. Actually I have never seen this term being named somehow in English. This term has a name in Russian books. I looked through the original Banach's text in Polish and there is a Polish name for this term. It is a little bit surprising that the Polish name differs from the Russian one and also differs from this English translation. My question is: Is there...
I know that mass does not affect the acceleration in a simple pendulum undergoing SHM, but how does the mass on the spring that makes up the elastic pendulum affect its acceleration? Certainly, there must be a change due to the displacement from equilibrium caused by each differing mass? I am talking about finding the acceleration at a specific time on each trial with different masses and comparing them. How would they compare and why?
Back
Top