I Can subspaces be used to determine probabilities in quantum mechanics?

  • I
  • Thread starter Thread starter friend
  • Start date Start date
  • Tags Tags
    Qm Subspaces
friend
Messages
1,448
Reaction score
9
Suppose we have an observable with a certain number of eigenstates. We would normalize all these possibilities to 1 in order to give each eigenstate an appropriate probability of being measured. Can we then only consider the data of many measurements for only a subset of those eigenstates and normalize that subset to 1 and get different probabilities for considering only that subset of alternatives? Is that subset called a subspace of the original Hilbert space? And can this be done for any arbitrary subset of the original eigenstates?
 
Last edited:
Physics news on Phys.org
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
If we release an electron around a positively charged sphere, the initial state of electron is a linear combination of Hydrogen-like states. According to quantum mechanics, evolution of time would not change this initial state because the potential is time independent. However, classically we expect the electron to collide with the sphere. So, it seems that the quantum and classics predict different behaviours!
Back
Top