Askhwhelp
- 84
- 0
In codes of length five over Z3 with d = 3 By using Hamming bound, the upper bound for the number of codeword is 22 and by Gilbert-Varshamov bound, the lower bound for the number of codeword is 2.
The question is to show that you can do better than the lower bound from above by constructing a ternary code of length 5 with minimum distance three with one more codeword than promised by the lower bound of what I found above 2.
What is the process to find such as code?
The question is to show that you can do better than the lower bound from above by constructing a ternary code of length 5 with minimum distance three with one more codeword than promised by the lower bound of what I found above 2.
What is the process to find such as code?
Last edited: