hedlund
- 34
- 0
Starting with:
sin(x) = 2sin(x/2)cos(x/2)
sin(x/2) = 2sin(x/4)cos(x/4)
sin(x/4) = 2sin(x/8)cos(x/8) ...
So we can arrive at this
\sin{x} = 2^n \cdot \sin{\left(\frac{x}{2^n}\right)} \prod_{k=1}^{n} \cos{\left(\frac{x}{2^k}\right)}
Valid for n \in \mathbb{N} \backslash \{ 0 \}
Can you use this formula for anything?
sin(x) = 2sin(x/2)cos(x/2)
sin(x/2) = 2sin(x/4)cos(x/4)
sin(x/4) = 2sin(x/8)cos(x/8) ...
So we can arrive at this
\sin{x} = 2^n \cdot \sin{\left(\frac{x}{2^n}\right)} \prod_{k=1}^{n} \cos{\left(\frac{x}{2^k}\right)}
Valid for n \in \mathbb{N} \backslash \{ 0 \}
Can you use this formula for anything?