Can the Trajectory of a Bullet Be Modeled with a Single Mathematical Function?

  • Thread starter Thread starter lss1
  • Start date Start date
  • Tags Tags
    Function Path
AI Thread Summary
Modeling a bullet's trajectory with a single mathematical function is complex due to the changing dominance of horizontal and vertical motion. Initial equations describe the motion in terms of time, but as the bullet travels, the effects of gravity alter its vertical velocity while the horizontal component remains constant. Combining the two functions into one is not feasible; however, values for x and y can be calculated at a given time. For a more comprehensive model, incorporating air resistance is essential, as it significantly affects the trajectory. Understanding these dynamics is crucial for accurately describing projectile motion.
lss1
Messages
2
Reaction score
0
I've been mulling this over all weekend, and I've decided to get some help on this. The problem is writing a function to describe a bullet's path. I've asked two people about it my Physics teacher (who said he didn't know how) and my French teacher, who was a nuclear engineer for the US Navy (who said it was impossible). I don't know much about ballistics, but I am very willing to learn.

My Physics teacher started out with the equation $$y = v_y t + \frac{1}{2} a t^2$$ and the equation $$x = v_x t.$$ So I've been looking for a way to combine these two functions. I asked my French teacher about it and he said it was impossible because at the beginning of the travel-path, the motion is dominated by the x-component, and as it goes on the velocity in the x-direction slows down, and the y-acceleration becomes more dominant. He said that as the motion changes from x-dominated to y-dominated, the variable, t, becomes two different variables, and therefore cannot be written in the same function. I've been thinking it could work as a multivariable function, but I'm not sure.

Any help would be gratefully appreciated.
 
Physics news on Phys.org
lss1 said:
I've been mulling this over all weekend, and I've decided to get some help on this. The problem is writing a function to describe a bullet's path. I've asked two people about it my Physics teacher (who said he didn't know how) and my French teacher, who was a nuclear engineer for the US Navy (who said it was impossible). I don't know much about ballistics, but I am very willing to learn.

My Physics teacher started out with the equation $$y = v_y t + \frac{1}{2} a t^2$$ and the equation $$x = v_x t.$$ So I've been looking for a way to combine these two functions. I asked my French teacher about it and he said it was impossible because at the beginning of the travel-path, the motion is dominated by the x-component, and as it goes on the velocity in the x-direction slows down, and the y-acceleration becomes more dominant. He said that as the motion changes from x-dominated to y-dominated, the variable, t, becomes two different variables, and therefore cannot be written in the same function. I've been thinking it could work as a multivariable function, but I'm not sure.

Any help would be gratefully appreciated.

Welcome to the PF.

Projectile motion is pretty simple to deal with until you introduce air resistance. This wikipedia page should get you going:

http://en.wikipedia.org/wiki/Projectile_motion

Are you wanting to incorporate the effects of air resistance at some point?
 
Last edited:
Lesson: don't ask a French teacher to do the Physics teacher's job.

If you shoot a projectile with an initial velocity v at an angle theta to the horizon, the velocity can be decomposed into a horizontal component (vx) and a vertical component (vy). The time variable t is the same. Assuming there is no resistance to the motion of the projectile, the horizontal velocity is not diminished, while the effect of gravity acts to diminish the vertical velocity. At some time after launching the projectile, the vertical velocity drops to zero (while the horizontal velocity is undiminished), and the projectile begins to drop toward the ground (in other words, the vertical velocity has changed sign).

While you can't combine the expressions for the displacements x and y into a single equation, you can compute values of x and y at a single time t. The values of x and y can be thought of as components of a position vector which locates the projectile relative to where it was initially fired.
 
SteamKing said:
While you can't combine the expressions for the displacements x and y into a single equation, you can compute values of x and y at a single time t. The values of x and y can be thought of as components of a position vector which locates the projectile relative to where it was initially fired.

Unless by "combine these two functions" OP meant "write y as a function of x". If that's the case, OP: that's also easy, and is explained under "Parabolic trajectory" in berkeman's Wikipedia link.
 
Couldn't the OP use the second equation to eliminate time from the first? Assuming he/she is just looking for an equation to relate the x and y coordinates of the bullet trajectory.

Edit:
Merde!
 
Thread 'Question about pressure of a liquid'
I am looking at pressure in liquids and I am testing my idea. The vertical tube is 100m, the contraption is filled with water. The vertical tube is very thin(maybe 1mm^2 cross section). The area of the base is ~100m^2. Will he top half be launched in the air if suddenly it cracked?- assuming its light enough. I want to test my idea that if I had a thin long ruber tube that I lifted up, then the pressure at "red lines" will be high and that the $force = pressure * area$ would be massive...
I feel it should be solvable we just need to find a perfect pattern, and there will be a general pattern since the forces acting are based on a single function, so..... you can't actually say it is unsolvable right? Cause imaging 3 bodies actually existed somwhere in this universe then nature isn't gonna wait till we predict it! And yea I have checked in many places that tiny changes cause large changes so it becomes chaos........ but still I just can't accept that it is impossible to solve...
Back
Top