mc94 said:
How do I combine these to solve for x?
Ultimately this will give you three scalar equations for different components of x.
Note very well: Your approach is not how I would solve this problem. It's going to be a bit messy. I was trying to help you use your approach, but perhaps I should have pressed the site rules and given you a bit more help than nominal.
Also , in the second equation is x not just equal to b/λ?
No! That you wrote this, coupled with the way in which you wrote your equations, suggests to me that you have a basic misunderstanding of vectors and operations on them.
It's easy to see that ##x=b/\lambda## is not a general solution because ##\lambda x + a\times x## yields ##b+(a×b)/\lambda##, and this is equal to ##b## only if ##a \times b=0##. Always double check that your solution is indeed a solution. What's happening here is that taking the inner product of each sides of ##\lambda x + a\times x = b## with ##a## loses loses information about the components normal to ##a##. What haruspex is suggesting is that you use some other operation to recover that lost information.
Hint: ##\vec u \cdot \vec v## tells you about the component of ##\vec v## that is parallel to ##\vec u##. ##\vec u \times \vec v## tells you about the component of ##\vec v## that is orthogonal the ##\vec v##. Use both and you have full knowledge of ##\vec v##.
All the approaches I've looked at using the cross product make it extremely hard to isolate x no?
You will need to use the triple product formulae.
haruspex is suggesting a second approach to solving this problem. I would solve this problem by yet another approach.
First off, I would look for special cases and deal with those separately. λ=0 is an obvious special case. Setting λ to 0 fundamentally changes the nature of the problem, so handle that problem separately. a×b=0 is a less obvious special case.
If a×b≠0, then a, b, and a×b span three dimensional space, so that means you can write the solution to the problem as being of the form ##x=\alpha a + \beta b + \gamma a\times b##. Substitute this into the problem statement and solve for ##\alpha##, ##\beta##, and ##\gamma##.