Government$
- 87
- 1
Homework Statement
If p is a prime and k is an integer for which 0<k<p, then p divides \displaystyle \ \binom{p}{k}.
Whne p divides \displaystyle \ \binom{p}{k} it means that \displaystyle \ \binom{p}{k}=p*b.
wheren b is some number.
The Attempt at a Solution
So p is equal to some number k.
p=k
I take factorial of both sides and get
p!=k!
and multiply both sides by
\frac{1}{k!(p-k)!}
to get
\frac{p!}{k!(p-k)!}=\frac{k!}{k!(p-k)!}
Since p=k
\displaystyle \ \binom{p}{k}=\frac{p(p-1)(p-2)...(p-k+1)(p-k)!}{k!(p-k)!}
then
\displaystyle \ \binom{p}{k}=p*\frac{(p-1)(p-2)...(p-k+1)}{k!}
where b=\frac{(p-1)(p-2)...(p-k+1)}{k!} therefore p divides \displaystyle \ \binom{p}{k}.
--------------------------------------------------------------------------------------
Homework Statement
If n \in N then \displaystyle \ \binom{2n}{n} is even i.e.
\displaystyle \ \binom{2n}{n}=2*b where b is some number
The Attempt at a Solution
\displaystyle \ \binom{2n}{n}=\frac{2n!}{n!(2n-n)!} = \frac{2n(2n-1)..3*2*1}{n!(2n-n)!}=2*\frac{n(2n-1)..3*2*1}{n!(2n-n)!} where b=\frac{n(2n-1)..3*2*1}{n!(2n-n)!}
Last edited: