Can this number theory problem be solved purely algebraically?

Wiz14
Messages
20
Reaction score
0
Let p be a prime number and 1 <= a < p be an integer.

Prove that a divides p + 1 if and only if there exist integers m and n such that
a/p = 1/m + 1/n

My solution: a|p+1 then there exists an integer m such that am = p+1
Dividing by mp
a/p = 1/m + 1/mp
So if I choose n = mp(which is always an integer) am I done?
 
Physics news on Phys.org
The answer to your title question is, yes. These things are usually solved algebraically. Just requires a bit of reasoning as you can see.

It looks like a good start but it's not that clear to me. It doesn't mean your proof is wrong, it just means it doesn't convince me yet. My questions are:

Have we even used the fact that p is prime?

Have we really shown that m and n are integers?

Have we shown what the proof is asking in the sense that this is true both ways? (iff and only if?). Typically this requires you to structure your proof as a string of "iff" or "if and only if" statements, or to prove it both ways (if P then Q, then if Q then P).

-Dave K
 
Your proof is fine one way. That is, you have proved "if a divides p+1, then there exist integers, m and n, such that a/p= 1/m+ 1/n".

But this is an "if and only if" statement. You have NOT YET proved the other way "if there exist integers, m and n, such that a/p= 1/m+ 1/n, then a divides p+1". That might be where you need to use "p is prime".
 
dkotschessaa said:
The answer to your title question is, yes. These things are usually solved algebraically. Just requires a bit of reasoning as you can see.

It looks like a good start but it's not that clear to me. It doesn't mean your proof is wrong, it just means it doesn't convince me yet. My questions are:

Have we even used the fact that p is prime?

Have we really shown that m and n are integers?

Have we shown what the proof is asking in the sense that this is true both ways? (iff and only if?). Typically this requires you to structure your proof as a string of "iff" or "if and only if" statements, or to prove it both ways (if P then Q, then if Q then P).

-Dave K

Thank you for your response.
The main reason I posted this question, and the reason I doubt my solution is correct, is because as you said we haven't used the fact that p is prime. But I cannot find any mistakes. I will try to better explain my answer.

By definition, a divides p+1 means that there exists an integer m such that am=p+1.
Now dividing both sides of the equation by mp, the equation becomes a/p=1/m +1/mp. Since p and m are integers, m*p=n is an integer. So we have proven the forward direction. To go backwards we can do the reverse operations on a/p=1/m + 1/mp to get am = p+1 which means that a divides p+1.
 
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...
Back
Top