Can we calculate three-point correlation in lattice qcd

Spinff
Messages
2
Reaction score
0
Is it feasible to calculate a three-point correlation on the lattice? Say, I have two quark fields separated at z_1+z_2 and 0, and a gluon field inserted at z_2. Also I need two gauge links to make this expression gauge invariant:

\bar{\psi}(z_1+z_2) \Gamma(z_1+z_2; z_2) F^{\mu\nu}(z_2) \Gamma(z_2;0) \psi(0).

I have asked some lattice people and they told me that it's hard to do such a calculation. What do you guys think of this?
 
Physics news on Phys.org
It's perfectly possible in principle to measure three-point functions. For example, it is common to compute matrix elements like ##\langle \pi^0 | \bar{d} \gamma_\mu (1 - \gamma_5) s | K^+ \rangle## which is needed for the calculation of the decay rate ##K^+ \to \pi^0 e^+ \nu_e##. This matrix element is computed as the correlation function of three operators: the current, an operator that creates a kaon, and an operator that destroys a pion.

Whether the measurement of a given three-point function can be expected to have a good signal-to-noise ratio is another matter and I don't know enough myself to guess the answer for your case.
 
Toponium is a hadron which is the bound state of a valance top quark and a valance antitop quark. Oversimplified presentations often state that top quarks don't form hadrons, because they decay to bottom quarks extremely rapidly after they are created, leaving no time to form a hadron. And, the vast majority of the time, this is true. But, the lifetime of a top quark is only an average lifetime. Sometimes it decays faster and sometimes it decays slower. In the highly improbable case that...
I'm following this paper by Kitaev on SL(2,R) representations and I'm having a problem in the normalization of the continuous eigenfunctions (eqs. (67)-(70)), which satisfy \langle f_s | f_{s'} \rangle = \int_{0}^{1} \frac{2}{(1-u)^2} f_s(u)^* f_{s'}(u) \, du. \tag{67} The singular contribution of the integral arises at the endpoint u=1 of the integral, and in the limit u \to 1, the function f_s(u) takes on the form f_s(u) \approx a_s (1-u)^{1/2 + i s} + a_s^* (1-u)^{1/2 - i s}. \tag{70}...
Back
Top