KnightTheConqueror said:
I am still in high school and I haven't studied tensors... Can you suggest me some resource to get an idea of it?
If you are familiar with matrices, you may for practical purposes in Cartesian coordinates consider a rank 2 tensor a 3x3 matrix
$$
\begin{pmatrix}\partial v^x/\partial x & \partial v^y /\partial x & \partial v^z /\partial x \\
\partial v^x/\partial y & \partial v^y /\partial y & \partial v^z /\partial y \\
\partial v^x/\partial z & \partial v^y /\partial z & \partial v^z /\partial z \end{pmatrix}
$$
Multipyling with ##\begin{pmatrix}v^x & v^y & v^z\end{pmatrix}## from the left gives
$$
\begin{pmatrix}
v^x (\partial v^x/\partial x) +
v^y (\partial v^x/\partial y) +
v^z (\partial v^x/\partial z) &
v^x (\partial v^y/\partial x) +
v^y (\partial v^y/\partial y) +
v^z (\partial v^y/\partial z) &
v^x (\partial v^z/\partial x) +
v^y (\partial v^z/\partial y) +
v^z (\partial v^z/\partial z)
\end{pmatrix}
$$