MHB Can You Crack This Advanced Integral Problem?

  • Thread starter Thread starter DreamWeaver
  • Start date Start date
  • Tags Tags
    Challenge Integral
AI Thread Summary
The discussion revolves around solving an advanced integral problem involving the integral of a function expressed in terms of hyperbolic cosine and sine functions. The integral is shown to be equal to a series involving the Gamma function and sine terms. Participants express appreciation for the mathematical elegance of the solution, particularly when reformulated as a Mellin transform. The conversation highlights the complexity and beauty of the integral, showcasing the collaborative nature of problem-solving in advanced mathematics. The thread concludes with mutual respect for the mathematical skills demonstrated.
DreamWeaver
Messages
297
Reaction score
0
OK, OK, so I'll stop soon... lol This'll be the last one for a while. But hey, you all know what it's like; you just can't log on here and find too many interesting threads, so forgive me for getting carried away. I'm sorry... [liar] (Heidy) For $$0 < a < \pi$$, and $$b \in \mathbb{R} > -1$$, show that$$\int_0^{\infty}\frac{x^b}{\cosh x+\cos a}\,dx=\frac{2\Gamma(b+1)}{\sin a}\sum_{k=1}^{\infty}(-1)^{k+1}\frac{\sin ka}{k^{b+1}}$$
 
Mathematics news on Phys.org
I think it looks a little bit nicer if you express it as a Mellin transform.$ \displaystyle \int_{0}^{\infty} \frac{x^{b-1}}{\cosh x + \cos a} \ dx = \int_{0}^{\infty} \frac{x^{b-1}}{\frac{e^{x} +e^{-x}}{2} + \frac{e^{ia} + e^{-ia}}{2}} \ dx $

$ \displaystyle = 2 \int_{0}^{\infty} \frac{x^{b-1}}{e^{-x} (e^{2x} +1 + e^{x+ia}+e^{x-ia})} \ dx = 2 \int_{0}^{\infty} \frac{e^{x} x^{b-1}}{(e^{x-ia} + 1)(e^{x+ia}+1)} \ dx $

$ \displaystyle = 2 \int_{0}^{\infty} x^{b-1} \frac{1}{(e^{ia} - e^{-ia})} \Big( \frac{1}{e^{x-ia}+1} - \frac{1}{e^{x+ia}+1} \Big) dx $

$ \displaystyle = \frac{1}{i \sin a} \Big( \int_{0}^{\infty} \frac{x^{b-1}}{e^{x-ia}+1} \ dx - \int_{0}^{\infty} \frac{x^{b-1}}{e^{x+ia}+1} \ dx \Big) $

$ \displaystyle = \frac{1}{i \sin a} \Big( -\Gamma(b) \text{Li}_{b}(-e^{ia}) + \Gamma(b) \text{Li}_{b}(-e^{-ia}) \Big) $

$ \displaystyle = \frac{\Gamma(b)}{i \sin(a)} \Big( - \sum_{k=1}^{\infty} (-1)^{k} \frac{e^{ika}}{k^{b}} + \sum_{k=1}^{\infty} (-1)^{k} \frac{e^{-ika}}{k^{b}} \Big)$

$ \displaystyle = \frac{\Gamma(b)}{\sin a} \sum_{k=1}^{\infty} (-1)^{k} \frac{1}{k^{b}} \Big( \frac{-e^{ika} + e^{-ika}}{i} \Big) = \frac{2 \Gamma(b)}{\sin a} \sum_{k=1}^{\infty} (-1)^{k-1} \frac{\sin ka}{k^{b}} $
 
Last edited:
Random Variable said:
I think it looks a little bit nicer if you express it as a Mellin transform.

^^ Agreed! :D

Your Kung Fu is good, self-evidently... (Bow)(Bow)(Bow)
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Back
Top