Can You Crack This Advanced Integral Problem?

  • Context: MHB 
  • Thread starter Thread starter DreamWeaver
  • Start date Start date
  • Tags Tags
    Challenge Integral
Click For Summary
SUMMARY

The discussion centers on solving the integral $$\int_0^{\infty}\frac{x^b}{\cosh x+\cos a}\,dx$$ for $$0 < a < \pi$$ and $$b \in \mathbb{R} > -1$$. The solution is expressed in terms of the Gamma function and an infinite series involving sine functions: $$\frac{2\Gamma(b+1)}{\sin a}\sum_{k=1}^{\infty}(-1)^{k+1}\frac{\sin ka}{k^{b+1}}$$. The participants emphasize the elegance of representing the integral as a Mellin transform, showcasing the relationship between complex analysis and integral calculus.

PREREQUISITES
  • Understanding of integral calculus, particularly improper integrals.
  • Familiarity with the Gamma function and its properties.
  • Knowledge of Mellin transforms and their applications.
  • Basic concepts of complex analysis, including sine and exponential functions.
NEXT STEPS
  • Study the properties and applications of the Gamma function in advanced calculus.
  • Learn about Mellin transforms and their role in solving integrals.
  • Explore complex analysis techniques, particularly involving sine and exponential functions.
  • Investigate series expansions and their convergence properties in mathematical analysis.
USEFUL FOR

Mathematicians, students of advanced calculus, and anyone interested in complex analysis and integral transformations will benefit from this discussion.

DreamWeaver
Messages
297
Reaction score
0
OK, OK, so I'll stop soon... lol This'll be the last one for a while. But hey, you all know what it's like; you just can't log on here and find too many interesting threads, so forgive me for getting carried away. I'm sorry... [liar] (Heidy) For $$0 < a < \pi$$, and $$b \in \mathbb{R} > -1$$, show that$$\int_0^{\infty}\frac{x^b}{\cosh x+\cos a}\,dx=\frac{2\Gamma(b+1)}{\sin a}\sum_{k=1}^{\infty}(-1)^{k+1}\frac{\sin ka}{k^{b+1}}$$
 
Physics news on Phys.org
I think it looks a little bit nicer if you express it as a Mellin transform.$ \displaystyle \int_{0}^{\infty} \frac{x^{b-1}}{\cosh x + \cos a} \ dx = \int_{0}^{\infty} \frac{x^{b-1}}{\frac{e^{x} +e^{-x}}{2} + \frac{e^{ia} + e^{-ia}}{2}} \ dx $

$ \displaystyle = 2 \int_{0}^{\infty} \frac{x^{b-1}}{e^{-x} (e^{2x} +1 + e^{x+ia}+e^{x-ia})} \ dx = 2 \int_{0}^{\infty} \frac{e^{x} x^{b-1}}{(e^{x-ia} + 1)(e^{x+ia}+1)} \ dx $

$ \displaystyle = 2 \int_{0}^{\infty} x^{b-1} \frac{1}{(e^{ia} - e^{-ia})} \Big( \frac{1}{e^{x-ia}+1} - \frac{1}{e^{x+ia}+1} \Big) dx $

$ \displaystyle = \frac{1}{i \sin a} \Big( \int_{0}^{\infty} \frac{x^{b-1}}{e^{x-ia}+1} \ dx - \int_{0}^{\infty} \frac{x^{b-1}}{e^{x+ia}+1} \ dx \Big) $

$ \displaystyle = \frac{1}{i \sin a} \Big( -\Gamma(b) \text{Li}_{b}(-e^{ia}) + \Gamma(b) \text{Li}_{b}(-e^{-ia}) \Big) $

$ \displaystyle = \frac{\Gamma(b)}{i \sin(a)} \Big( - \sum_{k=1}^{\infty} (-1)^{k} \frac{e^{ika}}{k^{b}} + \sum_{k=1}^{\infty} (-1)^{k} \frac{e^{-ika}}{k^{b}} \Big)$

$ \displaystyle = \frac{\Gamma(b)}{\sin a} \sum_{k=1}^{\infty} (-1)^{k} \frac{1}{k^{b}} \Big( \frac{-e^{ika} + e^{-ika}}{i} \Big) = \frac{2 \Gamma(b)}{\sin a} \sum_{k=1}^{\infty} (-1)^{k-1} \frac{\sin ka}{k^{b}} $
 
Last edited:
Random Variable said:
I think it looks a little bit nicer if you express it as a Mellin transform.

^^ Agreed! :D

Your Kung Fu is good, self-evidently... (Bow)(Bow)(Bow)
 

Similar threads

  • · Replies 14 ·
Replies
14
Views
3K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 18 ·
Replies
18
Views
3K