MHB Can You Crack This Advanced Integral Problem?

  • Thread starter Thread starter DreamWeaver
  • Start date Start date
  • Tags Tags
    Challenge Integral
Click For Summary
The discussion revolves around solving an advanced integral problem involving the integral of a function expressed in terms of hyperbolic cosine and sine functions. The integral is shown to be equal to a series involving the Gamma function and sine terms. Participants express appreciation for the mathematical elegance of the solution, particularly when reformulated as a Mellin transform. The conversation highlights the complexity and beauty of the integral, showcasing the collaborative nature of problem-solving in advanced mathematics. The thread concludes with mutual respect for the mathematical skills demonstrated.
DreamWeaver
Messages
297
Reaction score
0
OK, OK, so I'll stop soon... lol This'll be the last one for a while. But hey, you all know what it's like; you just can't log on here and find too many interesting threads, so forgive me for getting carried away. I'm sorry... [liar] (Heidy) For $$0 < a < \pi$$, and $$b \in \mathbb{R} > -1$$, show that$$\int_0^{\infty}\frac{x^b}{\cosh x+\cos a}\,dx=\frac{2\Gamma(b+1)}{\sin a}\sum_{k=1}^{\infty}(-1)^{k+1}\frac{\sin ka}{k^{b+1}}$$
 
Mathematics news on Phys.org
I think it looks a little bit nicer if you express it as a Mellin transform.$ \displaystyle \int_{0}^{\infty} \frac{x^{b-1}}{\cosh x + \cos a} \ dx = \int_{0}^{\infty} \frac{x^{b-1}}{\frac{e^{x} +e^{-x}}{2} + \frac{e^{ia} + e^{-ia}}{2}} \ dx $

$ \displaystyle = 2 \int_{0}^{\infty} \frac{x^{b-1}}{e^{-x} (e^{2x} +1 + e^{x+ia}+e^{x-ia})} \ dx = 2 \int_{0}^{\infty} \frac{e^{x} x^{b-1}}{(e^{x-ia} + 1)(e^{x+ia}+1)} \ dx $

$ \displaystyle = 2 \int_{0}^{\infty} x^{b-1} \frac{1}{(e^{ia} - e^{-ia})} \Big( \frac{1}{e^{x-ia}+1} - \frac{1}{e^{x+ia}+1} \Big) dx $

$ \displaystyle = \frac{1}{i \sin a} \Big( \int_{0}^{\infty} \frac{x^{b-1}}{e^{x-ia}+1} \ dx - \int_{0}^{\infty} \frac{x^{b-1}}{e^{x+ia}+1} \ dx \Big) $

$ \displaystyle = \frac{1}{i \sin a} \Big( -\Gamma(b) \text{Li}_{b}(-e^{ia}) + \Gamma(b) \text{Li}_{b}(-e^{-ia}) \Big) $

$ \displaystyle = \frac{\Gamma(b)}{i \sin(a)} \Big( - \sum_{k=1}^{\infty} (-1)^{k} \frac{e^{ika}}{k^{b}} + \sum_{k=1}^{\infty} (-1)^{k} \frac{e^{-ika}}{k^{b}} \Big)$

$ \displaystyle = \frac{\Gamma(b)}{\sin a} \sum_{k=1}^{\infty} (-1)^{k} \frac{1}{k^{b}} \Big( \frac{-e^{ika} + e^{-ika}}{i} \Big) = \frac{2 \Gamma(b)}{\sin a} \sum_{k=1}^{\infty} (-1)^{k-1} \frac{\sin ka}{k^{b}} $
 
Last edited:
Random Variable said:
I think it looks a little bit nicer if you express it as a Mellin transform.

^^ Agreed! :D

Your Kung Fu is good, self-evidently... (Bow)(Bow)(Bow)
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 14 ·
Replies
14
Views
3K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 6 ·
Replies
6
Views
2K
Replies
6
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
Replies
10
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K