MHB Can You Crack This Advanced Integral Problem?

  • Thread starter Thread starter DreamWeaver
  • Start date Start date
  • Tags Tags
    Challenge Integral
AI Thread Summary
The discussion revolves around solving an advanced integral problem involving the integral of a function expressed in terms of hyperbolic cosine and sine functions. The integral is shown to be equal to a series involving the Gamma function and sine terms. Participants express appreciation for the mathematical elegance of the solution, particularly when reformulated as a Mellin transform. The conversation highlights the complexity and beauty of the integral, showcasing the collaborative nature of problem-solving in advanced mathematics. The thread concludes with mutual respect for the mathematical skills demonstrated.
DreamWeaver
Messages
297
Reaction score
0
OK, OK, so I'll stop soon... lol This'll be the last one for a while. But hey, you all know what it's like; you just can't log on here and find too many interesting threads, so forgive me for getting carried away. I'm sorry... [liar] (Heidy) For $$0 < a < \pi$$, and $$b \in \mathbb{R} > -1$$, show that$$\int_0^{\infty}\frac{x^b}{\cosh x+\cos a}\,dx=\frac{2\Gamma(b+1)}{\sin a}\sum_{k=1}^{\infty}(-1)^{k+1}\frac{\sin ka}{k^{b+1}}$$
 
Mathematics news on Phys.org
I think it looks a little bit nicer if you express it as a Mellin transform.$ \displaystyle \int_{0}^{\infty} \frac{x^{b-1}}{\cosh x + \cos a} \ dx = \int_{0}^{\infty} \frac{x^{b-1}}{\frac{e^{x} +e^{-x}}{2} + \frac{e^{ia} + e^{-ia}}{2}} \ dx $

$ \displaystyle = 2 \int_{0}^{\infty} \frac{x^{b-1}}{e^{-x} (e^{2x} +1 + e^{x+ia}+e^{x-ia})} \ dx = 2 \int_{0}^{\infty} \frac{e^{x} x^{b-1}}{(e^{x-ia} + 1)(e^{x+ia}+1)} \ dx $

$ \displaystyle = 2 \int_{0}^{\infty} x^{b-1} \frac{1}{(e^{ia} - e^{-ia})} \Big( \frac{1}{e^{x-ia}+1} - \frac{1}{e^{x+ia}+1} \Big) dx $

$ \displaystyle = \frac{1}{i \sin a} \Big( \int_{0}^{\infty} \frac{x^{b-1}}{e^{x-ia}+1} \ dx - \int_{0}^{\infty} \frac{x^{b-1}}{e^{x+ia}+1} \ dx \Big) $

$ \displaystyle = \frac{1}{i \sin a} \Big( -\Gamma(b) \text{Li}_{b}(-e^{ia}) + \Gamma(b) \text{Li}_{b}(-e^{-ia}) \Big) $

$ \displaystyle = \frac{\Gamma(b)}{i \sin(a)} \Big( - \sum_{k=1}^{\infty} (-1)^{k} \frac{e^{ika}}{k^{b}} + \sum_{k=1}^{\infty} (-1)^{k} \frac{e^{-ika}}{k^{b}} \Big)$

$ \displaystyle = \frac{\Gamma(b)}{\sin a} \sum_{k=1}^{\infty} (-1)^{k} \frac{1}{k^{b}} \Big( \frac{-e^{ika} + e^{-ika}}{i} \Big) = \frac{2 \Gamma(b)}{\sin a} \sum_{k=1}^{\infty} (-1)^{k-1} \frac{\sin ka}{k^{b}} $
 
Last edited:
Random Variable said:
I think it looks a little bit nicer if you express it as a Mellin transform.

^^ Agreed! :D

Your Kung Fu is good, self-evidently... (Bow)(Bow)(Bow)
 
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top