Can you please check my solution of this kinematics problem?

AI Thread Summary
The discussion centers on solving a kinematics problem involving a boat crossing a river with specific parameters. The boat's trajectory angle and the river's speed are given, and the goal is to determine the speed and angle needed for the boat to cross in a set time. The user calculates an angle of approximately 20.16 degrees and a speed of 4.10 m/s, but these differ from the textbook answers of about 35 degrees and 2.49 m/s. Suggestions for verifying the solution include using vector diagrams and considering the riverbank as a coordinate reference. The conversation highlights potential misunderstandings regarding the angles and the measurement of distance across the river.
CherryWine
Messages
29
Reaction score
0

Homework Statement


A boat is crossing a river between via points A and B which are d=400m apart. The speed of the river is V2=2 m/s and is constant along the AB line. The angle of the boats trajectory is α=45 degrees. At what speed V2 and with what angle β should the boat be directed so that it crosses the ABA path in t=4min? The angle β is the same in all directions of boats motion.

Picture: http://pokit.org/get/?c13e83eda46604a35787df84c222522d.jpg

Homework Equations


[/B]
All kinematic. Equation for the roots of a quadratic polynomial. Basic trigonometry.

The Attempt at a Solution


So first of all I set my coordinate plane so that the AB line lies on the x-axis. Then we can draw vector diagrams and deduce that if the boat is moving strictly on the AB line then it holds $$v_2sinα=v_1sinβ$$. The speed of the boat in the direction of AB is given by $$v_{AB}=v_2cosβ+v_1cosα$$ and the speed of the boat in the direction of BA is given by $$v_{BA}=v_1cosα-v_2cosβ$$. The given speed equations can be deduced from studying the following two diagrams:

http://pokit.org/get/?2751e09a819e7d327fd72e25fef6c7eb.jpg

The total time is given by $$t=t_1+t_2 =>\frac d {v_2cosβ+v_1cosα}+ \frac d {v_2cosβ-v_1cosα} = t$$ which after some algebra yields $$β=arccot(\frac {d+\sqrt {d^2+v_1^2t^2cos^2α}} {v_1tsinα})$$. Now the problem is that I obtain the value of $$β=20.16°$$ and then the boat speed from the equation $$v_2sinβ=v_1sinα$$ as $$v_2=4.10 m/s$$. However the answers given in the textbook are as follows $$β≈35° ~and~ v_2=2.49 m/s$$ I do not see how were the results from the texbook obtained, so if you could check my results so I know if I've done it correctly. Thanks.
 
Physics news on Phys.org
Try checking by another method: ie. use the river bank as your x coordinate.
Or maybe you can use your two diagrams to sum the velocities head-to-tail, making two triangles. You can then use the sine and cosine rules to solve for the sides using the information you have about the magnitude and direction of the final velocities ... perhaps.

Note:
CherryWine said:
[T]he AB line lies on the x-axis. Then we can draw vector diagrams and deduce that if the boat is moving strictly on the AB line then it holds $$v_2sinα=v_1sinβ$$.
Note: in the diagram, v1 is the river velocity, which makes angle alpha to the AB line which is your x axis.
So you appear to have the angles backwards here: ##v_1\sin\alpha = v_2\sin\beta##
You realize of course that: ##\sin\alpha = \cos\alpha = 1/\sqrt{2}##
... but do we take ##|AB|=d## or ##|AB| = d\sqrt{2}##? ie. is "d" measured along the bank or directly from A to B?
 
  • Like
Likes CherryWine
I multiplied the values first without the error limit. Got 19.38. rounded it off to 2 significant figures since the given data has 2 significant figures. So = 19. For error I used the above formula. It comes out about 1.48. Now my question is. Should I write the answer as 19±1.5 (rounding 1.48 to 2 significant figures) OR should I write it as 19±1. So in short, should the error have same number of significant figures as the mean value or should it have the same number of decimal places as...
Thread 'A cylinder connected to a hanging mass'
Let's declare that for the cylinder, mass = M = 10 kg Radius = R = 4 m For the wall and the floor, Friction coeff = ##\mu## = 0.5 For the hanging mass, mass = m = 11 kg First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on. Force on the hanging mass $$mg - T = ma$$ Force(Cylinder) on y $$N_f + f_w - Mg = 0$$ Force(Cylinder) on x $$T + f_f - N_w = Ma$$ There's also...
Back
Top