Can you prove the summation 13+23+33+...+n3=(1+2+...n)2?

  • Thread starter Thread starter Loren Booda
  • Start date Start date
  • Tags Tags
    Summation
Loren Booda
Messages
3,108
Reaction score
4
Given nonzero whole numbers n, prove

13+23+33+...+n3=(1+2+...n)2

I figured this out numerically, but lack the skills to solve it analytically (no doubt by induction) and could not find it in my table of summations. I'm too old for this to be homework.
 
Mathematics news on Phys.org
Loren Booda said:
Given nonzero whole numbers n, prove

13+23+33+...+n3=(1+2+...n)2

I figured this out numerically, but lack the skills to solve it analytically (no doubt by induction) and could not find it in my table of summations. I'm too old for this to be homework.

http://en.wikipedia.org/wiki/Faulhaber's_formula

look at the case p=3
 
Thanks, ice109. I'm surprised that I've never heard of Faulhaber before. I guess Bernoulli got all the acclaim.

I still don't see a derivation of my finding, however. I thought in the case I presented that p=3 on one side of the equation, and p=2 on the other, as opposed to p=3 for both sides of Faulhaber's formula.

K.J.Healey seems to have what I seek, including a proof of Nicomachus's theorem.
 
i like that one better

what the hell? every n^3 is the sum of n consecutive odd numbers? wheatstone's proof seems to imply that
 
Last edited:
If one knows the closed forms for all cases p< n, then the closed form for p=n can be derived as such:

Set up a table into two columns, LHS and RHS of the following equation;

(x+1)^{n+1} - x^{n+1} = (^{n+1}C_1)x^n + (^{n+1}C_2)x^{n-1} ...+1.

Sum this expression for k=1, 2,3,4...m. The LHS is a telescoping series. The RHS is the sum of cases p=0, 1, 2, 3... n. Replace every series with its known closed form. Then isolate the p=n case onto one side of the equation, and simplify.

Since we only need this for up to p=3, it shouldn't be very hard.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top