Supposing we restrict it to R^3 and are interested in the limiting case where delta -> 1. Obviously this is not your full problem, but at least I can say something about it, whereas the full out problem seems pretty hard. What I say can be generalized to R^n as well.
Suppose you are adding unit vectors one by one, trying to keep their tips spaced as far apart as possible on the unit sphere (or equivalently, trying to keep their angles as big as possible for a given number of vectors). For 2 vectors, you would place them at antipodes (opposite points on the sphere), 180 degrees. For 3 vectors, 120 degrees in the plane. 4 vectors, tetrahedron (~109 degrees). 5 vectors, a more complicated shape, 12 vectors, the points on a dodecahedron, etc etc.
For small numbers of vectors, adding each additional vector causes massive changes in the configuration of all previous vectors, and the angle jumps drastically (180 -> 120 -> 109 ..). However, when there are already a ton of vectors on there, say, 100, then the ball looks like a prickly sea urchin, and if you add one more vector, then the other vectors on there can accommodate it by all shifting very slightly. Everything from now on is assuming a large number of vectors.
Thus for large numbers of vectors, the the surface area of the unit sphere is uniformly sprinkled by the different vector tips. Further, if the vector tips are used to triangulate the surface of the sphere (Delaunay triangulization would work nicely), then as the number of vectors becomes large the triangles will become approximately equilateral.
You can use the Euler characteristic to find that the number of triangular faces is f=2(v-2) where v is the number of vectors. (v-e+f=2, and e=3f/2 since each face has 3 edges, which would double count each edge)
Since the triangles take up roughly equal surface area on the sphere, f*A = 4*pi, or A = 4*pi/f where A is the area of a single triangle. Additionally, since the triangle is approximately equilateral, the area is related to the edge length by A = d^2*sqrt(3)/4, or d = sqrt(4A/sqrt(3)).The angle between 2 neighboring vectors is then θ ~= arcsin(d) ~= d for small angles.
Putting this all together,
in the limit as v-> infinity, θ = sqrt(4*(4*pi/2(v-2))/sqrt(3))
You can invert this and find
in the limit as θ -> 0, v = 8*pi/(sqrt(3)*θ^2) + 2
assuming I didn't make any algebra mistakes in there...
your delta, by the way, is cos(θ), as that is the way the inner product relates to angle.