jimmychim
- 3
- 0
Homework Statement
1. Show that \int_0^\infty x^{n}e^{-ax}dx = \frac{n!} {a^{n+1}}
for n = 0, 1, 2, 3...
2. Show that \int_{-\infty}^\infty x^{2n}e^{-ax^{2}}dx =\frac{{\surd \pi} (2n-1)!} {2^{n}a^{(2n+1)/2}}
for n = 0, 1, 2, 3...
Assumption: \int_{-\infty}^\infty e^{-ax^{2}}dx =\surd \frac{\pi} a
a>0
3. Evaluate \int {\frac{1} {A^{x^2}+Bx+C}} dx
For all possible real values of A, B, C.
For #1 and #2, you may use mathematical induction, if you like.
Notation: 7! = 7 * 5 * 3 * 1
Homework Equations
The Attempt at a Solution
Last edited: