Cancelling confusion

  • #1
hi

i'm confused at to how my textbook has done the following cancelling :S. hope you can clear things up for me :D

thnx

context: im looking at complex numbers and De Moivre's Theorem and its consequences Ill use \oslash as the "arguement".

1. [tex]z_{1}z_{2} = r_{1}r_{2}(cos\oslash_{1}cos\oslash_{2} - sin\oslash_{1}sin\oslash_{2} + i(cos\oslash_{1}sin\oslash_{2} + sin\oslash_{1}cos\oslash_{2}))[/tex]

which then cancels to

[tex]z_{1}z_{2} = r_{1}r_{2}(cos(\oslash_{1} + \oslash_{2}) + isin(\oslash_{1} + \oslash_{2}))[/tex]

I see how the [tex]cos(\oslash_{1} + \oslash_{2})[/tex] gets there, but not sure whats going on with the rest :S.

2. [tex]\frac{1}{z} = \frac{1}{r}*\frac{cos\oslash-isin\oslash}{(cos\oslash+isin\oslash)(cos\oslash-isin\oslash)}[/tex]

cancels to

[tex]\frac{1}{z} = \frac{1}{r}*(cos\oslash-isin\oslash)[/tex]

have no idea whats going on there lol.


hope you can help :D
 

Answers and Replies

  • #2
cristo
Staff Emeritus
Science Advisor
8,107
73
hi

i'm confused at to how my textbook has done the following cancelling :S. hope you can clear things up for me :D

thnx

context: im looking at complex numbers and De Moivre's Theorem and its consequences Ill use \oslash as the "arguement".

1. [tex]z_{1}z_{2} = r_{1}r_{2}(cos\oslash_{1}cos\oslash_{2} - sin\oslash_{1}sin\oslash_{2} + i(cos\oslash_{1}sin\oslash_{2} + sin\oslash_{1}cos\oslash_{2}))[/tex]

which then cancels to

[tex]z_{1}z_{2} = r_{1}r_{2}(cos(\oslash_{1} + \oslash_{2}) + isin(\oslash_{1} + \oslash_{2}))[/tex]

I see how the [tex]cos(\oslash_{1} + \oslash_{2})[/tex] gets there, but not sure whats going on with the rest :S.
This is just using the double angle formula for sine: sin(a+b)=sin(a)cos(b)+cos(a)sin(b)
2. [tex]\frac{1}{z} = \frac{1}{r}*\frac{cos\oslash-isin\oslash}{(cos\oslash+isin\oslash)(cos\oslash-isin\oslash)}[/tex]

cancels to

[tex]\frac{1}{z} = \frac{1}{r}*(cos\oslash-isin\oslash)[/tex]

have no idea whats going on there lol.
Expand the denominator, and use the identity sin^2x+cos^2x=1
 
  • #3
thnx buddy :D
 

Related Threads on Cancelling confusion

  • Last Post
Replies
17
Views
1K
  • Last Post
Replies
2
Views
2K
  • Last Post
Replies
10
Views
4K
Replies
2
Views
2K
  • Last Post
Replies
9
Views
2K
  • Last Post
Replies
3
Views
2K
  • Last Post
Replies
2
Views
624
  • Last Post
Replies
13
Views
1K
  • Last Post
Replies
7
Views
2K
  • Last Post
Replies
4
Views
15K
Top