aleksbooker
- 22
- 0
Homework Statement
Find the area of the surface generated by revolving the curve
x=\frac{e^y + e^{-y} }{2}
from 0 \leq y \leq ln(2) about the y-axis.
The Attempt at a Solution
I tried the normal route first...
g(y) = x = \frac{1}{2} (e^y + e^{-y})
g'(y) = dx/dy = \frac{1}{2} (e^y - e^{-y})
S = \int 2\pi \frac{1}{2} (e^y + e^{-y}) \sqrt{1+(e^y - e^{-y})^2} dy
S = \pi \int (e^y + e^{-y}) \sqrt{\frac{1}{4}e^{2y}+\frac{1}{2}+\frac{1}{4}e^{-2y} } dy
S = \pi \int (e^y + e^{-y}) \sqrt{\frac{1}{4} (e^y+e^{-y})^2} dy
S = \pi \int (e^y + e^{-y}) \frac {1}{2} (e^y+e^{-y}) dy
But then I got stuck here...
S = \frac{1}{2} \pi \int (e^y + e^{-y})^2 dy
How should I proceed? Thanks in advance.