- #1

- 200

- 3

_{0}e

^{-t/RC}

But isn't dq/dt already implied to be negative, since charge on the capacitor is decreasing, and you force it to be negative using initial nd final conditions? So the final state is some low charge q, and the inital state is high charge Q.

Doing it this way gives Q = Q

_{0}e

^{t/RC}

I can see that as t increases, the charge Q increases as well. It's the opposite of what I know it should be and I know it has to do with using I = -dq/dt, but I can't see WHY we use -dq/dt when dq/dt is already negative.