Cantors diagonals Listable vs. countable

  • Thread starter Thread starter jVincent
  • Start date Start date
AI Thread Summary
Cantor's diagonal argument demonstrates that while natural numbers are countable, they cannot be completely listed in a way that includes every possible number. The confusion arises from misunderstanding the nature of lists; a valid list requires a first and subsequent elements, but natural numbers, being infinite, do not have a last member. The diagonal method constructs a number that is not a natural number, thus failing to show that natural numbers are unlistable. The key takeaway is that the diagonal argument illustrates the limitations of listing infinite sets, rather than proving that countable sets cannot be listed. This highlights the distinction between countability and the concept of a complete list.
jVincent
Messages
20
Reaction score
0
So I'm familier with cantos diagonals, but fail to see how something being unlistable makes it uncountable. Now a set being countable is to say it has a one to one corrospondance to the natural numbers, but using the diagonal method one can prove that the natural numbers are themselves unlistable.

Given any table of all the natural numbers, one can construct a number not in the table, simply by chosing something other then the n'th character in each number given, (ofcause chosing anything when no character apears).

Can someone clearify this for me? So far my conclusion is that either my textbooks are not being rigid enough in their proofs or the only thing cantors diagonal proof really proves is that it's absurd to talk about a complete list of even a countable set.
 
Mathematics news on Phys.org
jVincent said:
So I'm familier with cantos diagonals, but fail to see how something being unlistable makes it uncountable. Now a set being countable is to say it has a one to one corrospondance to the natural numbers, but using the diagonal method one can prove that the natural numbers are themselves unlistable.

Given any table of all the natural numbers, one can construct a number not in the table, simply by chosing something other then the n'th character in each number given, (ofcause chosing anything when no character apears).

Can someone clearify this for me? So far my conclusion is that either my textbooks are not being rigid enough in their proofs or the only thing cantors diagonal proof really proves is that it's absurd to talk about a complete list of even a countable set.
A "list" means to have a "first", a "second" etc. A list is precisely a one-to-one correspondence with the natural numbers.

I can't speak to whether your textbooks are not being rigid (did you mean "rigorous"?) enough but your "proof" that the natural numbers are unlistable doesn't work.
"Choosing something other than the nth character in each number given" will, since there are an infinite number of natural numbers, result in a resulting infinite sequence of digits. That is NOT "a number not in the table" because it is NOT a natural number. All natural numbers have a finite number of digits.
 
What do you think a list is?
 
Well as they refere to a list in my textbook, they refere to "imaginary" listings like on a blackboard, and while this implies a ordering, it also requires both a first element and a last element, which the natural numbers have not.

But thank you HallsofIvy for the answer, I understand now that the key point isn't the existence of a diagonal, but that the natural numbers are finite sequences, even though there are infinite many such sequences.
 
A list must always have a "first member" and there must always be a "next" member. But there does not have to be a "last" member.
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Is it possible to arrange six pencils such that each one touches the other five? If so, how? This is an adaption of a Martin Gardner puzzle only I changed it from cigarettes to pencils and left out the clues because PF folks don’t need clues. From the book “My Best Mathematical and Logic Puzzles”. Dover, 1994.
Back
Top