Cat's question at Yahoo Answers regarding approximate integration

Click For Summary
SUMMARY

The discussion centers on approximating total water consumption from a storage tank using the function C(t) = 25e ^-0.05(t-15)^2. The total consumption T for 24 hours is calculated using the integral T = ∫(0 to 24) C(t) dt, which does not have an elementary anti-derivative. The Midpoint Rule is employed for numerical approximation, yielding results that converge around 197.728 thousand gallons, confirming option c) as the best approximation.

PREREQUISITES
  • Understanding of calculus, specifically integration techniques.
  • Familiarity with the Midpoint Rule for numerical integration.
  • Knowledge of the error function and its application in approximating integrals.
  • Experience with computational tools like Wolfram|Alpha for numerical calculations.
NEXT STEPS
  • Study numerical integration methods, focusing on the Midpoint Rule and Trapezoidal Rule.
  • Learn about the error function and its applications in calculus.
  • Explore advanced integration techniques for functions without elementary anti-derivatives.
  • Practice using Wolfram|Alpha for solving calculus problems and numerical approximations.
USEFUL FOR

Students and professionals in mathematics, engineers involved in fluid dynamics, and anyone interested in numerical methods for integration.

MarkFL
Gold Member
MHB
Messages
13,284
Reaction score
12
Here is the question:

Calculus question: which would best approximate total water consumption of storage tank?


Water is pumped from a storage tank and the flower of water from the tank is given by C(t) = 25e ^-0.05(t-15)^2 thousand gallons per hour, where t is the number of hours since midnight. Which of the following best approximates the total water consumption for one day (in thousands of gallons)?

a) 33.964
b) 164.202
c) 197.727
d) 198.166
e) 202.144

How do you find this answer? Please explain how you work through this problem, thank you!

I have posted a link there to this thread so the OP can view my work.
 
Physics news on Phys.org
Hello Cat,

To find the total consumption $T$ of water for 24 hours, we may state:

$$T=\int_{0}^{24} C(t)\,dt=25\int_{0}^{24} e^{-\frac{(t-15)^2}{20}}\,dt$$

Now, the integrand in this problem does not have an anti-derivative expressible in elementary terms, so we must use either the error function or approximate integration. For simplicity of computation and aided by a computer, let's use the Midpoint Rule and state:

$$T\approx\Delta t\sum_{k=0}^{n-1}\left(C\left(\frac{t_{k}+t_{k+1}}{2} \right) \right)$$

Now, we find that:

$$\Delta t=\frac{24}{n}$$

$$t_k=\frac{24k}{n}$$

$$\frac{t_{k}+t_{k+1}}{2}=\frac{12}{n}(2k+1)$$

Hence:

$$T\approx T_n=\frac{600}{n} \sum_{k=0}^{n-1}\left(\exp\left(-\frac{\left(\dfrac{12}{n}(2k+1)-15 \right)^2}{20} \right) \right)$$

Now, at the site Wolfram|Alpha: Computational Knowledge Engine I used the command:

sum of (600/n)exp(-((12/n)(2k+1)-15)^2/20) for k=0 to n-1

where I substituted powers of 10 for $n$ and obtained (to 3 decimal places):

[TABLE="class: grid, width: 200"]
[TR]
[TD]$n$[/TD]
[TD]$T_n$[/TD]
[/TR]
[TR]
[TD]10[/TD]
[TD]197.814[/TD]
[/TR]
[TR]
[TD]100[/TD]
[TD]197.729[/TD]
[/TR]
[TR]
[TD]1000[/TD]
[TD]197.728[/TD]
[/TR]
[TR]
[TD]10000[/TD]
[TD]197.728[/TD]
[/TR]
[/TABLE]

Thus, the choice given by c) is the closest.
 

Similar threads

Replies
50
Views
7K
Replies
1
Views
4K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
1
Views
2K
Replies
1
Views
6K
Replies
1
Views
8K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
4K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
1
Views
2K