MHB Cauchy-Schwarz inequality for pre-inner product

Click For Summary
SUMMARY

The discussion centers on the application of the Cauchy-Schwarz (CBS) inequality in the context of pre-inner products as defined in Bruce Blackadar's "Operator Algebras." The key point is the proof that if [y,y]=0, then [x,y]=0 must hold for all x, which is essential for the CBS inequality to be valid. A standard proof technique is provided, demonstrating that assuming [y,y]=0 leads to a contradiction unless [x,y]=0. This confirms that the CBS inequality applies to pre-inner products under certain conditions.

PREREQUISITES
  • Understanding of pre-inner products in complex vector spaces
  • Familiarity with the Cauchy-Schwarz inequality
  • Basic knowledge of operator algebras
  • Proficiency in mathematical proof techniques
NEXT STEPS
  • Study the proof of the Cauchy-Schwarz inequality in the context of inner products
  • Explore the definitions and properties of pre-inner products
  • Review operator algebra concepts as presented in Bruce Blackadar's "Operator Algebras"
  • Investigate common proof techniques used in functional analysis
USEFUL FOR

Mathematicians, students of functional analysis, and anyone studying operator algebras will benefit from this discussion, particularly those interested in the nuances of inner and pre-inner product spaces.

mozganutyj
Messages
2
Reaction score
0
Dear all,

I've encountered some problems while looking through the book called "Operator Algebras" by Bruce Blackadar.
At the very beginning there is a definition of pre-inner product on the complex vector space: briefly, it's the same as the inner product, but the necessity of x=0 when [x,x]=0 holds is omitted.

The point is that this stuff is followed by the script that "Cauchy-Schwarz inequality" holds for pre-inner product and here is the place I'm stuck in:

I can't prove the trivial case: [y,y]=0 implies [x,y]=0 for every x (otherwise the CBS inequality won't hold as the right-hand side equals to zero in this case - therefore, the only chance for the CBS inequality to be satisfied is [x,y]=0).

I suspect that CBS holds when we've got the inner product, not only the pre-inner.

I'll appreciate every effort of assistance from your side!
 
Physics news on Phys.org
mozganutyj said:
Dear all,

I've encountered some problems while looking through the book called "Operator Algebras" by Bruce Blackadar.
At the very beginning there is a definition of pre-inner product on the complex vector space: briefly, it's the same as the inner product, but the necessity of x=0 when [x,x]=0 holds is omitted.

The point is that this stuff is followed by the script that "Cauchy-Schwarz inequality" holds for pre-inner product and here is the place I'm stuck in:

I can't prove the trivial case: [y,y]=0 implies [x,y]=0 for every x (otherwise the CBS inequality won't hold as the right-hand side equals to zero in this case - therefore, the only chance for the CBS inequality to be satisfied is [x,y]=0).

I suspect that CBS holds when we've got the inner product, not only the pre-inner.

I'll appreciate every effort of assistance from your side!
Hi mozganutyj and welcome to MHB!

The proof that $[y,y]=0$ implies $[x,y]=0$ is the same as the standard proof of the CBS inequality. If $[y,y] = 0$ then for every scalar $\lambda$ $$0\leqslant [\lambda y+x, \lambda y+x] = 2\text{re}\lambda[y,x] + [x,x].$$ By taking $\lambda = -t\overline{[y,x]}$ where $t$ is large and positive, you get a contradiction.

Don't hesitate to come back here if you have queries about Bruce Balackadar's book. As you can see from my user name, Operator algebras are my speciality.
 
Thanks, Opalg, for warm greetings!

Yes, the proof is pretty straightforward indeed - I've stumbled over the moment when I've decided to prove it in different way, than the standard technique. Maybe, Blackadar has trapped me (Smile) when he had considered the [y,y]=0 case as trivial, thus making me think of even more simplified machinery to prove it (Happy).

Once again - I'm grateful to you, dear Opalg, for your help.
God bless you ... and save the Queen for sure (Happy)

Opalg said:
Hi mozganutyj and welcome to MHB!

The proof that $[y,y]=0$ implies $[x,y]=0$ is the same as the standard proof of the CBS inequality. If $[y,y] = 0$ then for every scalar $\lambda$ $$0\leqslant [\lambda y+x, \lambda y+x] = 2\text{re}\lambda[y,x] + [x,x].$$ By taking $\lambda = -t\overline{[y,x]}$ where $t$ is large and positive, you get a contradiction.

Don't hesitate to come back here if you have queries about Bruce Balackadar's book. As you can see from my user name, Operator algebras are my speciality.
 

Similar threads

  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 13 ·
Replies
13
Views
3K
  • · Replies 5 ·
Replies
5
Views
4K
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K