MHB Cauchy-Schwarz inequality for pre-inner product

Click For Summary
The discussion centers around the application of the Cauchy-Schwarz (CBS) inequality to pre-inner products as defined in Bruce Blackadar's "Operator Algebras." The user struggles to prove that if [y,y]=0, then [x,y]=0 for all x, which is essential for the CBS inequality to hold. A response clarifies that the proof follows the standard approach, demonstrating that assuming [y,y]=0 leads to a contradiction when applying a specific scalar transformation. The user acknowledges the straightforward nature of the proof and reflects on their initial confusion. The conversation emphasizes the importance of understanding the nuances between inner products and pre-inner products in this context.
mozganutyj
Messages
2
Reaction score
0
Dear all,

I've encountered some problems while looking through the book called "Operator Algebras" by Bruce Blackadar.
At the very beginning there is a definition of pre-inner product on the complex vector space: briefly, it's the same as the inner product, but the necessity of x=0 when [x,x]=0 holds is omitted.

The point is that this stuff is followed by the script that "Cauchy-Schwarz inequality" holds for pre-inner product and here is the place I'm stuck in:

I can't prove the trivial case: [y,y]=0 implies [x,y]=0 for every x (otherwise the CBS inequality won't hold as the right-hand side equals to zero in this case - therefore, the only chance for the CBS inequality to be satisfied is [x,y]=0).

I suspect that CBS holds when we've got the inner product, not only the pre-inner.

I'll appreciate every effort of assistance from your side!
 
Physics news on Phys.org
mozganutyj said:
Dear all,

I've encountered some problems while looking through the book called "Operator Algebras" by Bruce Blackadar.
At the very beginning there is a definition of pre-inner product on the complex vector space: briefly, it's the same as the inner product, but the necessity of x=0 when [x,x]=0 holds is omitted.

The point is that this stuff is followed by the script that "Cauchy-Schwarz inequality" holds for pre-inner product and here is the place I'm stuck in:

I can't prove the trivial case: [y,y]=0 implies [x,y]=0 for every x (otherwise the CBS inequality won't hold as the right-hand side equals to zero in this case - therefore, the only chance for the CBS inequality to be satisfied is [x,y]=0).

I suspect that CBS holds when we've got the inner product, not only the pre-inner.

I'll appreciate every effort of assistance from your side!
Hi mozganutyj and welcome to MHB!

The proof that $[y,y]=0$ implies $[x,y]=0$ is the same as the standard proof of the CBS inequality. If $[y,y] = 0$ then for every scalar $\lambda$ $$0\leqslant [\lambda y+x, \lambda y+x] = 2\text{re}\lambda[y,x] + [x,x].$$ By taking $\lambda = -t\overline{[y,x]}$ where $t$ is large and positive, you get a contradiction.

Don't hesitate to come back here if you have queries about Bruce Balackadar's book. As you can see from my user name, Operator algebras are my speciality.
 
Thanks, Opalg, for warm greetings!

Yes, the proof is pretty straightforward indeed - I've stumbled over the moment when I've decided to prove it in different way, than the standard technique. Maybe, Blackadar has trapped me (Smile) when he had considered the [y,y]=0 case as trivial, thus making me think of even more simplified machinery to prove it (Happy).

Once again - I'm grateful to you, dear Opalg, for your help.
God bless you ... and save the Queen for sure (Happy)

Opalg said:
Hi mozganutyj and welcome to MHB!

The proof that $[y,y]=0$ implies $[x,y]=0$ is the same as the standard proof of the CBS inequality. If $[y,y] = 0$ then for every scalar $\lambda$ $$0\leqslant [\lambda y+x, \lambda y+x] = 2\text{re}\lambda[y,x] + [x,x].$$ By taking $\lambda = -t\overline{[y,x]}$ where $t$ is large and positive, you get a contradiction.

Don't hesitate to come back here if you have queries about Bruce Balackadar's book. As you can see from my user name, Operator algebras are my speciality.
 
Thread 'How to define a vector field?'
Hello! In one book I saw that function ##V## of 3 variables ##V_x, V_y, V_z## (vector field in 3D) can be decomposed in a Taylor series without higher-order terms (partial derivative of second power and higher) at point ##(0,0,0)## such way: I think so: higher-order terms can be neglected because partial derivative of second power and higher are equal to 0. Is this true? And how to define vector field correctly for this case? (In the book I found nothing and my attempt was wrong...

Similar threads

  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 13 ·
Replies
13
Views
3K
  • · Replies 5 ·
Replies
5
Views
4K
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K