Read about cauchy-schwarz inequality | 4 Discussions | Page 1

  1. Rabindranath

    A Lagrange multipliers on Banach spaces (in Dirac notation)

    I want to prove Cauchy–Schwarz' inequality, in Dirac notation, ##\left<\psi\middle|\psi\right> \left<\phi\middle|\phi\right> \geq \left|\left<\psi\middle|\phi\right>\right|^2##, using the Lagrange multiplier method, minimizing ##\left|\left<\psi\middle|\phi\right>\right|^2## subject to the...
  2. E

    I Spivak's proof of Cauchy Schwarz

    I was browsing through Spivak's Calculus book and found in a problem a very simple way to prove the cauchy schwarz inequality. Basically he tells to substitute x=xᵢ/[√(x₁²+x₂²)] and similarly for y (i=1 and 2), put into x^2 + y^2 >= 2xy. Add the two cases and we get the result. The problem is...
  3. L

    Inner Product, Triangle and Cauchy Schwarz Inequalities

    Homework Statement Homework Equations I am not sure. I have not seen the triangle inequality for inner products, nor the Cauchy-Schwarz Inequality for the inner product. The only thing that my lecture notes and text book show is the axioms for general inner products, the definition of norm...
  4. Y

    What is the discriminant of the following quadratic equation

    quadratic equation ||v||^2 - c(2v·w)+c^2||w||^2=0, where c belongs to any real number, v and w are both vectors
Top