Central difference approximation

AI Thread Summary
The discussion revolves around finding the expressions for the central difference approximation of the first and second derivatives on a non-uniform grid. It is suggested that the derivation for non-uniform grids should resemble that of uniform grids. Participants are encouraged to share their differential equations for further assistance. The conversation highlights the need for clarity in applying central difference methods in varying grid scenarios. Overall, the focus is on deriving accurate approximations for non-uniform grids.
hermano
Messages
38
Reaction score
0
Hi,

Where can I find the expression of the central difference approximation of the first and second derrivative (spatial) for a NON uniform grid?
 
Physics news on Phys.org
Hi,
I think the derivation in the case of non uniform grid should be similar as in the case of the uniform grid.

Write down your differential equation, I will try to help you.
 
So I know that electrons are fundamental, there's no 'material' that makes them up, it's like talking about a colour itself rather than a car or a flower. Now protons and neutrons and quarks and whatever other stuff is there fundamentally, I want someone to kind of teach me these, I have a lot of questions that books might not give the answer in the way I understand. Thanks
Back
Top