Centripetal Force: Moving Away from the Centre

AI Thread Summary
Centripetal force is essential for maintaining circular motion, acting towards the center of rotation. When an object moves away from the center, it experiences acceleration directed inward. The spring attached to point B stretches to exert a force that pulls the object back toward the center. This dynamic occurs because the object naturally tends to move in a straight line until the spring's tension counteracts that motion. Understanding this interaction clarifies the relationship between centripetal force and the object's movement.
v_pino
Messages
156
Reaction score
0
The answer is as follow:


-force is needed toward the centre or there is acceleration toward the centre

-movement to the left/toward A/away from the centre

-right hand spring (attached to B) has to stretch to provide force



I understand that centripetal force acts towards the center as stated in the first point of the answer. But I don't know why M moves away from the center and that spring attached to B stretches. Thank you. :)
 

Attachments

  • circular motion.JPG
    circular motion.JPG
    40.3 KB · Views: 419
Physics news on Phys.org
Look at it from above. M just "wants" to go straight--until the springs get compressed/stretched and start pulling it towards the center.
 
Thanks! :D clears everything!
 
I multiplied the values first without the error limit. Got 19.38. rounded it off to 2 significant figures since the given data has 2 significant figures. So = 19. For error I used the above formula. It comes out about 1.48. Now my question is. Should I write the answer as 19±1.5 (rounding 1.48 to 2 significant figures) OR should I write it as 19±1. So in short, should the error have same number of significant figures as the mean value or should it have the same number of decimal places as...
Thread 'Collision of a bullet on a rod-string system: query'
In this question, I have a question. I am NOT trying to solve it, but it is just a conceptual question. Consider the point on the rod, which connects the string and the rod. My question: just before and after the collision, is ANGULAR momentum CONSERVED about this point? Lets call the point which connects the string and rod as P. Why am I asking this? : it is clear from the scenario that the point of concern, which connects the string and the rod, moves in a circular path due to the string...
Thread 'A cylinder connected to a hanging mass'
Let's declare that for the cylinder, mass = M = 10 kg Radius = R = 4 m For the wall and the floor, Friction coeff = ##\mu## = 0.5 For the hanging mass, mass = m = 11 kg First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on. Force on the hanging mass $$mg - T = ma$$ Force(Cylinder) on y $$N_f + f_w - Mg = 0$$ Force(Cylinder) on x $$T + f_f - N_w = Ma$$ There's also...
Back
Top