Finding the Centroid Using Green's Theorem

bodensee9
Messages
166
Reaction score
0
Can someone help me with the following? I'm supposed to find the centroid of a region D using Green's Theorem. Assume that this density function is constant.


∫Pdx + ∫Qdy = ∫∫(dQ/dx)-(dP/dy)
A = ∫xdy = -∫ydx = ½*∫xdy - ydx


I know that the mass of a region D with constant density function is ∫kdA (which is the area times some constant K). Let's make it easy and assume that k = 1 with the area A. So, the centroid of the region D would be located at (1/A*∫∫xdA) and (1/A*∫∫ydA). So, if I set Pdx as -ydx, and Qdy as xdy, I would get from Green's Theorem that ∫Pdx = -∫∫ydxdy and ∫Qdy = ∫∫xdxdy. But if you divide by A this is the expression for the coordinates of the centroid, since ∫∫xdxdy = ∫∫xdA and -∫∫ydxdy = ∫∫ydA. So you have the coordinates as 1/2A∫x^2/dy and 1/2A∫-y^2dx as the coordinates? Thanks.
 
Physics news on Phys.org
Yes. Setting P=0, Q=x^2/2 gives you x integrated over the surface and P=(-y)^2/2, Q=0 gives you y. So your final conclusion is correct.
 
I know this is an old thread, but I need to understand the derived centroid coordinates from Green's theorem.

I basically got lost when he said "So, if I set Pdx as -ydx, and Qdy as xdy, I would get from Green's Theorem that∫Pdx = -∫∫ydxdy and ∫Qdy = ∫∫xdxdy."

By my understanding, ∫Pdx = ∫-ydx, using Green's theorem,
∫∫(dQ/dx - dP/dy)dA = ∫∫(--1)dxdy = ∫∫dA = A?
 
I know you know it's an old thread, but parasitizing old threads is an almost sure way to get completely ignored. If Q=x^2/2 then dQ/dx is x. That's all I'm going to say until you do the right thing and post your own problems.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top