- 5,702
- 1,587
A multiple zeta value is defined as
\zeta(s_1,...,s_k) = \sum_{n_1 > n_2 ... > n_k > 0} \frac{1}{n_1^{s_1} n_2^{s_2}...n_k^{s_k}}.
For example,
\zeta(4) = \sum_{n = 1}^{\infty} \frac{1}{n^4}
and
\zeta(2,2) = \sum_{m =1}^{\infty} \sum_{n = 1}^{m-1} \frac{1}{ m^2 n^2}.
Prove the following relationship:
\zeta(2)^2 = 4 \zeta(3,1) + 2 \zeta(2,2)
\zeta(s_1,...,s_k) = \sum_{n_1 > n_2 ... > n_k > 0} \frac{1}{n_1^{s_1} n_2^{s_2}...n_k^{s_k}}.
For example,
\zeta(4) = \sum_{n = 1}^{\infty} \frac{1}{n^4}
and
\zeta(2,2) = \sum_{m =1}^{\infty} \sum_{n = 1}^{m-1} \frac{1}{ m^2 n^2}.
Prove the following relationship:
\zeta(2)^2 = 4 \zeta(3,1) + 2 \zeta(2,2)